
Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry

Karim M. Addas,1 Christoph F. Schmidt,3 and Jay X. Tang1,2

1Department of Physics, Indiana University, 727 East Third Street, Bloomington, Indiana 47405, USA
2Department of Physics, Brown University, 184 Hope Street, Providence, Rhode Island 02912, USA

3Department of Physics of Complex Systems, Vrije Universiteit, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands
(Received 24 February 2004; published 11 August 2004)

Semiflexible polymers are of great biological importance in determining the mechanical properties of cells.
Techniques collectively known as microrheology have recently been developed to measure the viscoelastic
properties of solutions of submicroliter volumes. We employ one such technique, which uses a focused laser
beam to trap a micron-sized silica bead and interferometric photodiode detection to measure passively the
position fluctuations of the trapped bead with nanometer resolution and high bandwidth. The frequency-
dependent complex shear modulusG*sfd can be extracted from the position fluctuations via the fluctuation-
dissipation theorem and the generalized Stokes-Einstein relation. Using particle tracking microrheology, we
report measurements of shear moduli of solutions of fd viruses, which are filamentous, semiflexible, and
monodisperse bacteriophages, each 0.9mm long, 7 nm in diameter, and having a persistence length of 2.2mm.
Recent theoretical treatments of semiflexible polymer dynamics provide quantitative predictions of the rheo-
logical properties of such a model system. The fd samples measured span the dilute, semidilute, and concen-
trated regimes. In the dilute regimeG*sfd is dominated by(rigid rod) rotational relaxation, whereas the
high-frequency regime reflects single-semiflexible filament dynamics consistent with the theoretical prediction.
Due to the short length of fd viruses used in this study, the intermediate regime does not exhibit a well-
developed plateau. A dynamic scaling analysis gives rise to a concentration scaling ofc1.36 sr =0.99d in the
transition regime and a frequency scaling off 0.63 sr =0.98d at high frequencies.
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I. INTRODUCTION

Characteristic lengths that describe polymer solutions are
monomer diameterd, mesh size or effective entanglement
lengthLe, contour lengthL, and persistence lengthLp. Lp is
the length traversed along the filament contour before the
tangent vector thermally randomizes its orientation; it is pro-
portional to the bending stiffness of the polymer. The ratio
betweenL and Lp provides a criterion to distinguish two
asymptotic classes of polymers. Flexible polymers are char-
acterized byLp!L, rigid-rod polymers byLp@L. Real poly-
mers are somewhere between the extremes, and the behavior
observed depends, in general, on the length and time scales
of interest. It is useful to define a third class of polymers in
the intermediate regime, namely semiflexible polymers, char-
acterized byLp<L@d.

Examples of semiflexible polymers include some syn-
thetic polymers, particularly helical polypeptides, such as po-
ly(benzyl glutamate) (PBLG); aromatic polyamides, such as
kevlar and xanthan; and a large variety of biopolymers, par-
ticularly DNA, various protein polymers, such as F-actin,
microtubules and intermediate filaments, and also filamen-
tous viruses, one of which we study in this paper. Semiflex-
ible polymers are of great biological importance. The cytosk-
eletal filament F-actin, for instance, is involved in many
activities, such as cell motility[1], and muscle contraction
[2]. Networks of F-actin polymers, which are found prefer-
entially in the cortex of most eukaryotic cells, also determine
the mechanical properties of cells and provide a crucial link
in mechanosensing biochemical networks[3]. Theoretical
models for flexible[4–6] and rigid-rod[7,8] systems were
developed in the late 1970s by de Gennes, Doi, Edwards, and

others. The distinctive features of single filaments as well as
networks and solutions of semiflexible polymers have only
recently begun to be explored, both experimentally[9–13]
and theoretically [14–20]. A multitude of characteristic
length scales reflected in a multitude of characteristic time
scales makes, in general, for very complex behavior, even in
chemically homogeneous systems. A fully quantitative un-
derstanding of the mechanics of a cell, with typically im-
mense chemical and structural complexity, is at this time far
from being reached. Progress is being made with relatively
simple model systems, and the trend is to tackle increasingly
complex systems.

Most polymer solutions exhibit both viscous and elastic
properties. The physical quantity commonly employed to
quantify the viscoelasticity of such solutions is the complex
shear modulusG*sfd. The most frequently used methods to
measure the shear modulus involve placing the samples with
volumes of order milliliters in chambers of well-defined ge-
ometry (parallel plates, cone and plate or concentric cylin-
ders [21]). The shear modulus can be extracted from the
relation between applied shear force and measured strain or
vice versa.

Recently, several techniques, collectively called microrhe-
ology [11,22–25], have been developed to probe, on micro-
scopic scales, the material properties of systems, ranging
from simple polymer solutions to the interior of living cells.
All the related methods use microscopic particles embedded
in the sample and detect either thermal fluctuations of those
particles(passive microrheology) or their response to applied
forces (active microrheology). Motivations for miniaturiza-
tion have been:(i) In many cases, and especially in biologi-
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cal systems, only small volumes of material, typically micro-
liters, are available.(ii ) A microscopic probe offers the
possibility to study inhomogeneities in the elastic properties
of the polymer network on micrometer scales, for example,
directly in the cytoskeleton of cells. In inhomogeneous ma-
terials, the ability to study them with probes spanning some
of the characteristic microscopic length scales(e.g., ap-
proaching the interchain separation or mesh size of gels) will
also lead to important new insights into the microscopic ba-
sis of the macroscopic viscoelasticity of such systems.(iii )
Microrheology readily allows for measuring viscoelasticity
at higher frequencies, above 1 kHz or even up to MHz, be-
cause inertia of both the probe and embedding medium can
be neglected at such small length scales[26,27]. (iv) In net-
works of semiflexible polymers, nonlinear response occurs
typically for small strains, and an advantage, particularly of
using the passive technique, is that linear response param-
eters are measured by definition.

The microrheology method we use in this study is based
on recording the thermal fluctuations of micron-sized beads
embedded in the viscoelastic medium to be studied. A single
probe bead is observed at a time by laser interferometry in a
light microscope[11]. Detection by photodiodes ensures a
bandwidth of detection between about 0.1 Hz and 100 kHz
[27]. Frequency-dependent complex shear elastic and loss
moduli [G8sfd andG9sfd, respectively] are determined from
the fluctuations of the embedded probes using dispersion re-
lations from linear response theory[11].

The microrheology study is applied to a well-
characterized model system of monodisperse semiflexible
rods. The polymer we employ is the filamentousE.coli bac-
teriophage fd, which consists of a single-stranded circular
DNA covered with a coat made of identical protein subunits
[28,29]. This virus system has the advantage that particle
length is extremely monodisperses0.9 mmd [30,31]. The per-
sistence length is 2.2mm [32–34], and rod diameter is 7 nm.
An atomic force microscopy image of virus particles ad-
sorbed to a glass slide is shown in Fig. 1. At pH 7, the virus
particles have a net negative surface charge[35], which pre-
vents aggregation. Our experiments were performed at suffi-
cient ionic strength(50 mM, monovalent) to largely screen
electrostatic interactions[36,37]. The fd virus provides a mi-
croscopically well-controlled model system of a semiflexible
polymer, which we use to test viscoelastic properties in con-
centration regimes spanning the dilute, semidilute, and con-
centrated regimes. We compare our results to theoretical pre-
dictions in the asymptotic regimes of dilute rods at low
frequencies[38] and of single-filament dynamics at high fre-
quencies[15,16]. There is currently no theoretical treatment
applicable to semidilute solutions of short semiflexible poly-
mers, and we hope to stimulate further modeling efforts by
presenting our experimental results.

The rest of the paper is outlined as follows. In Sec. II we
describe the methods of preparation and sample handling of
the virus solutions. Section III provides an outline of the
microrheology technique used, a description of the experi-
mental setup, and data analysis methods. Experimental re-
sults and discussion will be presented in Sec. IV. Concluding
remarks will be made in Sec. V. The Appendix contains a
sketch of the relevant theoretical treatments of semiflexible

polymer systems in the dilute, semidilute, and tightly en-
tangled limits and a discussion of the physical mechanisms
and time dependence of the different contributions to the
shear modulus of such systems.

II. MATERIALS

A. Preparation of fd virus

The fd bacteriophages were prepared by a standard
method [39]. Briefly, freeze-dried fd and their host E-coli
bacteria (strain K38) were purchased from the American
Type Culture Collection(Manassas, VA). A large amount of
the progeny phages were separated from the bacterial media
by multiple steps of sedimentation and resuspension, fol-
lowed by a final separation step using the cesium chloride
density gradient method. The virus suspensions were kept in
a (5 mM imidazole, 1 mM NaN3) buffer at pH 7.

B. Sample preparation

A concentrated stock solution of fd was prepared at
15 mg/ml, pH 7, and ionic strength I=50 mM(5 mM imi-
dazole, 1 mMNaN3, and 46.5 mM KCl). The concentration
was determined by UV absorption atl=269 nm(extinction
coefficient «=3.84 cm2/mg) [31], using a Shimadzu UV
1601 Spectrophotometer. Samples for microrheology were
prepared in disposable sample chambers of volume,20 ml,
constructed of a microscope coverslip mounted on a micro-
scope slide with double-stick tape( ,70 mm deep). The con-
centrated stock solution of virus was diluted to the desired
final concentration by adding a buffer solution of the same
ionic composition(see above) and a solution of probe par-
ticles (silica beads, diameter 5.0mm ,10% standard devia-
tion, 10% solids by mass, purchased from Bangs Laborato-
ries, Indianapolis, IN). The beads in the final sample were
diluted by,1:1000. The sample was then pipetted into the

FIG. 1. AFM dry scan of fd virus filaments on a glass-slide
surface. The virus has a contour length of 0.9mm. The image was
acquired using the tapping mode of a nanoscope dimension AFM.
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chamber, which was sealed with vacuum grease, and then
mounted onto the microscope stage.

III. MICRORHEOLOGY METHOD

A. Principle of the technique

The microrheology technique used is a passive one in
which the thermal fluctuations of a micron-sized bead are
used to calculate the response function of the bead by the
fluctuation-dissipation theorem. The procedure outlined be-
low is that of Schnurret al. [11]. The complex single-particle
response functionasfd=a8sfd+ ia9sfd relates the Fourier
transformxsfd of the bead displacementxstd to the Fourier
transformFsfd of the forceFstd acting on the bead

xsfd = asfdFsfd. s1d

The fluctuation-dissipation theorem provides the link be-
tween the single-sided Power Spectral Density(PSD)

Ssfd = limt→`

2

t
xtsfdxt

*sfd, wherextsfd =E
−t/2

t/2

xst8de2pi f t8dt8

s2d

and the imaginary part of the response function by

a9sfd =
p

2kbT
fSsfd, s3d

where kb is the Boltzmann constant, andT is the solution
temperature.

A Kramers-Kronig relation can then be used to calculate
the real part of the response function, provided thata9sfd is
known over a large enough frequency range[11]

a8sfd = 4E
0

`

dt coss2pf tdE
0

`

dja9sjdsins2pj td. s4d

The connection between the response of the bead and the
complex shear modulusGsfd=G8sfd+ iG9sfd of the vis-
coelastic medium surrounding the bead is assumed to be pro-
vided by the generalized Stokes-Einstein relation(GSER)
[11]

Gsfd =
1

6pa asfd
, s5d

whereG8 andG9 are the elastic and loss moduli respectively,
anda is the radius of the bead. This expression reduces to the
familiar result for a spherical probe particle in a purely vis-
cous medium of viscosityh, Gsfd=−i2pfh. The GSER does
not take into account the possibility of the probe particle
coupling to modes of the system other than shear modes, i.e.,
compressional modes, or the importance of inertial effects of
the particle and medium at high frequencies. The validity of
the GSER in a viscoelastic two-fluid medium model in the
continuum limit has been addressed by Levine and Lubensky
[26]. The GSER was found to be a good approximation to
the full-response function in this model within a certain fre-
quency regime. Traditional rheology operates at much lower

frequencies and by design directly excites shear modes, thus
avoiding these complications.

B. Experimental setup

Microrheology was performed in a custom-built light mi-
croscope using a focused laser beam and laser interferometry
to optically trap the probe particle and to record the thermal
motions of individual probe particles as described in detail
previously[11,40]. To detect motions of beads imbedded in
the gel we used an interferometer[40] with near-infrared
laser illumination(1064 nm cw, Topaz 106c, Spectra Phys-
ics, Mountain View, CA). The laser beam passes through an
optical isolator, which prevents back reflections into the la-
ser, then through a beam expander, which increases the effi-
ciency of optical trapping. A combination of half wave plate
and polarizer control the power of the beam, and two lenses
in a telescope configuration allow control of the position of
the beam focus in the plane perpendicular to the beam direc-
tion. The beam enters the microscope after reflection off a
dichroic mirror and is brought to a focus in the sample cham-
ber by a high NA objective(1003 ,NA 1.3, Neofluar, Zeiss,
Jena, GmbH). The laser light emerging from the condenser
lens, after passing through the sample, is projected onto a
quadrant photodiode in such a way that the back focal plane
of the condenser is imaged[40]. An outline of the setup is
presented in Fig. 2(a), and a sketch of the sample chamber
and detection scheme is presented in Fig. 2(b). The signals
from the four quadrants of the photodiode are combined to
obtain X and Y voltages corresponding to the displacements
of the bead in these directions in the plane normal to the
propagation direction of the laser. The output voltages are,
after analog amplification and preprocessing, recorded using
an A–D interface(200 kHz, ChicoPlus, Innovative Integra-
tion, Simi Valley, CA) and data acquisition software written
in Labview (National Instruments, Austin, TX). All experi-
ments reported here were performed at two sampling rates,
20 kHz and 195 kHz(antialias filtered at about 10 kHz and
100 kHz, respectively). High bandwidth of detection was
made possible by using a special-purpose fully depleted
p-type silicon photodiode[YAG444-4A, Perkin Elmer, Vau-
dreuil, Canada(denoted Si-HB)] [27]. This diode was de-
signed for fast detection of 1064 nm light and was operated
at a 100 V reverse-bias voltage. Position data for each bead
was normally recorded until two million data points were
acquired per channel. Autocorrelations and Kramers-Kronig
integrals were performed using software developed in the
lab, written in C++. The resulting response data were ana-
lyzed with Mathematica 4.2(Wolfram Research, Champaign,
IL ) to obtain the shear moduli.

After loading a sample, the optical trap was used to posi-
tion the 5mm diameter beads about 30mm above the bottom
surface of the chamber to minimize the surface boundary
effect. The influence of the surface effect was tested at a
number of distances from the microscope slides, and at larger
than 20mm, the obtainedG8 and G9 values were found to
vary less than 5% and thus the error was deemed negligible
(data not shown).

C. Calibration

Position data were recorded at different laser powers
ranging from 6 to 200 mW, measured just before the beam
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enters the microscope optics. The actual power in the speci-
men is about a factor of 2 lower, depending somewhat on
beam diameter. The calibration factorR for each power and
direction relates the quadrant diode output voltage to the
actual position of the trapped bead with respect to the trap
center. The calibration factor is obtained by observing the
thermal fluctuations of beads in buffer solution taken at the
same power settings as for the actual samples of interest
[41]. The PSD of a bead in buffer has a Lorentzian form

Ssfd =
S0 f c

2

f c
2 + f 2 , s6d

whereS0 is the low-frequency plateau value, andfc is the
corner frequency. The calibration factor is[42]

Rsm/Vd =Î kbT

6p3haS0 f c
2 . s7d

In the limit of high frequency, but before solvent inertial
effects become significant,S0 f c

2=S f 2 and so the high-
frequency points ofS f 2 can be used in Eq.(7) to obtain the

calibration factor(method one). One could also use a form of
the PSD(which includes solvent inertial effects[27,43]), fit
the data to it, and extractS0 f c

2 from the fit (method two).
Both methods were compared and calibration factors were
found to agree within 5%. PSD data for one power setting,
before applying calibration factors, taken for nine different
beads in buffer are shown in Fig. 3(a). The calibration factors
extracted from these PSDs are shown for the nine beads in
the inset along with the average value for each direction.
These average values were used to convert diode voltage
values into position data. From the spread in the X- and
Y-calibration factors, we estimate a polydispersity in bead
size of 9.3% standard deviation. The PSDs for motion in the
X- and Y-directions, respectively, averaged over all beads are
presented in Fig. 3(b).

Averaged PSDs(over nine beads and both directions) are
shown in Fig. 4 along with their calibration factors(inset) for

FIG. 2. (a) An outline of the essential components of the laser
and optical paths.(b) Sketch of an fd sample with a bead in a laser
trap and a quadrant photo diode, which detects the position of the
bead.

FIG. 3. (a) PSD of nine different beads in buffer. The values are
calculated from X and Y voltage data for each bead. The dotted line
indicates the frequency above which the signal is strongly attenu-
ated by an anti-aliasing filter. Inset: X(closed circles) and Y (open
circles) calibration factors for each of the nine beads obtained from
their respective power spectra. The straight lines show the averaged
calibration factors over the nine beads for X(solid) and Y(dashed)
directions.(b) The X and Y power spectra of(a) averaged over all
beads.
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five different power settings. The corner frequencies for each
power are indicated with arrows, and are seen to increase
with power as expected, whereas the low-frequency plateau
values are seen to decrease with increasing power, again as
expected[41].

We used Eqs.(3)–(5) to calculate the shear loss modulus
from the buffer PSDs for a 5mm diameter bead. The loss
moduli measured at two sampling rates(20 kHz and
195 kHz) are plotted in Fig. 5(filled symbols). The data
agree well with the expected straight line based on the
Stokes drag loss modulus relationG9=2phf (dashed line).
The viscosity of waterh was 0.969310−3 Pa·sec at the
measured room temperature of 21.4°C. TheG9 data points

are higher than the straight-line Stokes relation at frequen-
cies above 5 kHz(indicated by an arrow in Fig. 5). The
reason for this is that solvent inertia can no longer be ne-
glected at such high frequencies[27,43].

D. Trap correction

A simple viscous fluid, such as the watery buffer, has no
elastic modulus, but on computingG8sfd from the buffer
PSD data, we find frequency independentG8 values varying
with the trapping laser power(Fig. 5). These observed ap-
parent moduli are due to the harmonic confinement of the
beads by the laser trap. In a viscoelastic sample, such as the
fd solutions, this trap-generated modulus adds to the actual
elastic modulus of the sample while it does not influence the
viscous modulus. In order to obtain the true fd elastic modu-
lus, the trap stiffnessk must be corrected for. The relation-
ship between the response functionatruesfd, which reflects
the elastic confinement by the polymer network, not includ-
ing the trap effect, and the measured complex response
ameasuredis [44]

atrue =
ameasured

1 − kameasured
, s8d

which upon inversion using the GSER[Eq. (5)] gives

Gtrue8 = Gmeasured8 −
k

6pa
. s9d

The trap stiffness can be calculated[41] from the corner
frequency of the data taken in buffer at the same laser power,
using k=2pgfc, whereg=6ph a is the Stokes drag on the
bead. Horizontal lines ofG8=k / s6p ad, with k derived from
fitting Lorentzians to the PSDs, are plotted in Fig. 5 passing
through the corresponding apparentG8sfd curves, derived
from the Kramers-Kronig integrals.

For fd concentrations below 0.2 mg/ml, the trap stiffness,
even at low laser power, dominates the modulus such that
with experimental noise, it becomes unreliable to extract the
fd elastic modulus. At concentrations between 0.2 and
2 mg/ml, the trap dominates only at low frequencies,
whereas the elastic modulus of the fd solution, which in-
creases with frequency, dominates at the higher frequencies.
Small bead-to-bead variations ink, coming mainly from
polydispersity in bead radius, cause large errors in the cor-
rected elastic moduli at low frequencies when one uses the
buffer experiments at the respective laser power to correct
for the trap. Therefore, we used the average over the first few
flat points of the uncorrectedG8 curves themselves to sub-
tract from those curves to correct for the trap effect. An
example of this trap correction in a 2 mg/ml fd solution is
shown in Fig. 6. The 2 mg/ml fd PSD is shown in Fig. 6(a)
(solid black line) with the buffer PSD at the same laser
power (solid grey line) as a reference. The corresponding
elastic modulus is shown in Fig. 6(b) (circles). The low-
frequency part of the curve asymptotically approaches the
apparent modulus due to the trap. Taking the average of the
first six low-frequency points givesGtrap8 (solid flat line). The
fd elastic modulus(squares) is obtained by subtractingGtrap8
from the total modulus.

FIG. 4. PSD averaged over several beads in buffer for five dif-
ferent laser powers. The corner frequency for each power is indi-
cated with an arrow. Inset: Calibration factors of all beads for X
(crosses) and Y(dashes) directions for each of the five laser powers.

FIG. 5. G8sfd (open symbols) of beads in buffer for five differ-
ent laser powers.G9 data was averaged over three powers taken at
a sampling rate of 20 kHz(filled inverted triangles) and averaged
over two powers taken at a 195 kHz sampling rate(filled dia-
monds). Lines areG8=k /6pa, wherek is the trap stiffness, anda is
the radius of the bead. The straight lineG9=2phf for the loss
modulus in buffer passes through theG9 data points. The arrow
indicates the frequency beyond which hydrodynamic effects be-
come visible.
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For higher fd concentrations, between 5 and 14 mg/ml,
the fd modulus dominates at all frequencies. We therefore
useatrue of Eq. (8), with k derived from fitting Lorentzians
to the PSDs of buffer data at the same laser powers to obtain
the corrected modulusGtrue8 for these concentrations. Bead
polydispersity causes only a small error in these cases since
the correction itself is relatively small to begin with.

E. Nonlinearity of the displacement detection
and temperature effect

The interferometric displacement detection method is ap-
proximately linear for displacements up to about 200 nm(for
0.5 mm beads) from the center of the trap[45]. If the bead
thermally moves to larger distances, the displacements are
underreported. This would be expected to increasingly occur
with decreasing laser power and with more compliant
samples. In order to test if nonlinearity in the detection
caused relevant errors in our experiments, we performed a
measurement with a 0.5mm diameter silica bead trapped in
two superimposed laser foci of different colors— a 1064 nm

trap of varying powers14–140 mWd and a wider 830 nm
trap of constant low powers,5 mWd. The 1064 nm focus
diameter is estimated[46] to be about 1.2mm, and the
830 nm focus diameter was expanded to about four microns
[46] by introducing a 1 mm pinhole in a plane conjugate to
the back focal plane of the objective. A sketch of the setup is
shown in Fig. 7(a). As the power in the 1064 nm focus is
more and more reduced, the bead will thermally move to
larger distances from the center of the trap. To the extent that
the bead ventures beyond the linear region of the 1064 nm
beam, the position data and so the PSD as measured by the
narrow beam will be underreported. Figure 7(b) shows the
PSDs measured by the 1064 nm beam at different power
settings of the same trap using one and the same bead. Slight
shifts in PSD curves are visible with curves corresponding to
lower power settings lying below the ones corresponding to
high powers, consistent with a slight nonlinearity effect in
detection. This is a worst-case scenario. The linear regime of
detection(it scales with bead size for large beads) is consid-
erably higher for the larger 5mm beads we use in our fd
experiments. Furthermore, the fluctuations in the position of
the larger beads will be lower in an elastic environment.
Thus we conclude that the bead motion in our fd experiments
was well within the linear range of detection. The effect of
laser-induced heating, which would cause a qualitatively
similar shift in the PSDs, was considered negligible for the
following reasons:(i) As the power is increased, the solvent
temperature increases(7.7±1.2 K/W for water) [47], and its
viscosity is reduced, which leads to larger fluctuations in the
bead position and thus larger PSD values[47]. This tempera-
ture effect on the PSD in water solutions has been measured
by Peterman, Gittes, and Schmidt[47] and was found to be
,5% for a power range of 0–120 mW using a 1064 nm
wavelength laser.(ii ) Figure 7(c) shows the PSD of a 0.5mm
bead in buffer as measured by the wide 830 nm beam for
different power settings of the narrow beam. No significant
shift in the PSDs is measured, indicating that neither a tem-
perature nor a nonlinear effect is detectable by the wide trap.

F. Controls for aggregation of fd around the probe bead

There are three possible effects that could cause the local
concentration of fd in the vicinity of the probe bead to be
different from the bulk fd concentration.(i) There might be
direct attractive or repulsive interactions between the bead
surface and the virus particles.(ii ) There will in any case be
an entropic steric interaction, causing a depletion zone in the
absence of attractive interactions.(iii ) There might be a dy-
namic pileup of virus due to the interaction with the laser
trap. We controlled for direct attractive interactions of virus
particles with silica beads by fluorescence microscopy and
by atomic force microscopy(AFM). We fluorescently la-
beled virus particles with rhodamine and tracked the motion
of single virus particles around trapped silica beads. In no
cases did we see virus particles stuck to the beads. We then
put a mixture of virus particles and beads on a glass slide and
made AFM dry scans. We also did not observe any detectable
increase in fd density around the beads in this test. We then
controlled for a laser-induced dynamic pileup of the virus

FIG. 6. (a) PSD for a bead in buffer(grey solid line) and a bead
in 2 mg/ml fd solution(black solid line) at a fixed power.(b) G8sfd
before trap correction(circles), G8 after trap correction(squares),
and G8 of the trap (flat line). The data are obtained from the
2 mg/ml fd PSD curve of(a).
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particles. We used the two colored beams sketched in Fig.
7(a) with beads in concentrated fd solution of 13.5 mg/ml.
The wide 830 nm focus was of low powers,5 mWd and
was used for displacement detection. The tight 1064 nm fo-
cus with variable laser power was used for trapping and was
expected to pile up increasing amounts of fd around the bead
with increasing trapping power. An increasing local fd con-
centration around the probe bead with increasing trapping
power would shift the power spectra down at high frequen-
cies due to increased viscosity, which lowers the position
fluctuations of the bead. Figure 7(d) shows the PSD curves
measured from one and the same trapped bead with the wide
830 nm beam for increasing power applied to the narrow
beam. In the high-frequency part of the spectrum[Fig. 7(d)
inset] we see no systematic shift in the PSD curves with
power, excluding the possibility of any measurable buildup
of virus particles around the bead. The low-frequency part of
the spectra is different for different powers, reflecting the

increasing trap strength. The high-frequency tails of the PSD
are curved slightly upward due to shot noise, since we used
rather low power in the wide detection beam.

The depletion zone around a bead of radiusa is expected
to be of a thickness interpolating between bead radius and
filament length or persistence length, as long as the latter two
are larger than bead radius. If the bead is larger, then the
shorter one of the two characteristic filament lengths will
determine the depletion-layer thickness[11]. Filament and
persistence length are about 1mm. Therefore, we used beads
of 5 mm diameter to reduce depletion effects. This works
because even if the bead displacements are only nm, the
Stokes flow field around the bead extends to a distance of
about a around the bead and samples mostly undisturbed
bulk medium in the case of 5mm beads. The effects mea-
sured with smaller beads and a comparison of single-particle
to dual-particle microrheology will be published elsewhere
[48].

FIG. 7. (a) A sketch of the double laser trap setup used to test for the pileup of fd virus around a 0.5mm diameter bead. The wide and
narrow focused laser traps have wavelengths of 830 nm and 1064 nm, respectively.(b) PSD for a bead in buffer measured with the narrow
1064 nm wavelength laser trap for different power settings of the same traps14–140 mWd. Inset: PSD times the square of frequency for a
portion of the high-frequency data.(c) PSD for a bead in buffer measured with the wide 830 nm wavelength laser trap for different power
settings of the narrow traps14–140 mWd. Inset: PSD times the square of frequency for a portion of the high-frequency data.(d) PSD for the
same sized bead in a concentrated 13.5 mg/ml fd solution measured with the wide trap for different power settings of the narrow trap
s14–190 mWd. Darker curves correspond to higher power settings of the narrow trap. Inset: PSD times the 1.8th power of frequency for a
portion of the high-frequency data.
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IV. RESULTS AND DISCUSSION

A micrometer-sized bead optically trapped in a viscoelas-
tic solution undergoes confined Brownian motion. For a
purely viscous fluid the variance of the position fluctuations
xstd is simply related via the equipartition theorem to the trap
stiffness by[41] kxstd2l=kbT/k. The displacement variance
is equal to the integral over the PSD. A change in viscosity
alone will not change the variance and therefore the integral
of the PSD, but will change its shape. It will still be a Lorent-
zian, but with a different corner frequency. A segment of the
thermal fluctuations in the position of a bead trapped in
buffer is shown in the inset of Fig. 8. The PSD curve corre-
sponding to these fluctuations is the top dotted curve in Fig.
8. Adding a viscoelastic polymer to the solution will have
two effects. The complex shear modulusG* will generally
increase and the PSDs will decrease in amplitude. Adding
both a frequency-dependent loss and elastic modulus will
also change the functional form of the PSDs, and they will
no longer be Lorentzians. Figure 8 illustrates how the PSDs
gradually change with increasing virus concentration. As ex-
pected PSD amplitudes decrease with increasing concentra-
tion. The slope of the curves at high frequencies deviates
slightly from −2, below about 100 Hz this deviation is stron-
ger, tending toward a slope of about −1.5 at the highest virus
concentration. The corner frequency first moves to lower fre-
quencies and then disappears entirely as the curves change
shape.

In the following we will discuss the complex shear modu-
lus of solutions of varying virus concentrations, derived from
thermal fluctuation-time series data as described in Eqs.
(3)–(5). Curves will only be presented after correction for the
trap effects as described in Materials and Methods. Data
were taken at several low powers at a sampling rate of
20 kHz and several high powers at a sampling rate of
195 kHz. Data are presented for both the elastic and loss

moduli after averaging over several beads and the two per-
pendicular spatial directions recorded for each power. Before
averaging it was checked that X and Y fluctuations from each
individual recording gave identical spectra within experi-
mental noise. The elastic and loss moduli derived from the
PSD data for the lowest, intermediate, and highest concen-
trations 0.2, 2, and 14 mg/ml are shown in Figs. 9(a), 9(b),
and 9(c), respectively.G9 here includes both solvent and
polymer contributions. At the concentration of 0.2 mg/ml
[Fig. 9(a)], which is barely above the overlap concentration
c*s0.04 mg/mld, the sample is predominantly viscous over
the whole frequency range measured, withG9sfd scaling as
f1 as expected for a(close to) Newtonian fluid. It should be
noted that the elastic modulusG8sfd has a very low absolute
magnitudes,10−2 Pad, which is very difficult to measure
with macroscopic rheometers, but still reasonably well re-
solved in microrheology. With increasing fd concentration
[Figs. 9(b) and 9(c)], both moduli increase and, relatively,
the elastic character of the solution increases, withG8 ap-
proachingG9. Even at 14 mg/ml, which is just below the
isotropic-nematic phase transition, the elastic modulus is
only on the order of 10 Pa, and the sample is still mainly
viscous, i.e., it remains rather weakly entangled. This is due
to the short contour length of the particles and to the charged
surface of the fd virus, which prevents sticking between the
particles. The increase inG8 causes a shape change in theG9
curve and a decrease in(log-log) slope below 1 in the center
part of the curves, in agreement with the Kramers-Kronig
integral relationship betweenG8 andG9 [Eqs.(3)–(5)]. In the
terminal relaxation regime, which is best visible at the inter-
mediate concentration,G8sfd has a slope of 2, whileG9sfd
has a slope of 1, as expected for rigid rods in fluid(see
below). For the high-concentration sample the terminal re-
laxation regime moves to frequencies below the lower fre-
quency limit of the instrument. At the high-frequency end of
the curves,G9sfd increases with approximate power-law be-
havior, the slope of which approaches 3/4 at high concentra-
tions as predicted for semiflexible polymers(see below).
G8sfd is even for the highest concentration measured still in
a transition regime between a plateaulike regime and the ex-
pected high-frequency scaling regime. In a true power-law
regimeG8 andG9 must be parallel.

Figure 10 presents the full-concentration dependence of
elastic and viscous moduli, respectively. The concentration
dependence ofG8sfd is presented in Fig. 10(a). Virus con-
centrations ranged from 0.2 to 14 mg/ml, spanning the dilute
to entangled regimes.G8sfd shows a strong, more than
1000-fold increase in magnitude that reflects the increased
degree of entanglement. The terminal relaxation regime is
accordingly shifted to lower frequencies with increasing con-
centration, below the lower frequency limit of the experi-
ment for the highest concentrations. A further indication of
entanglement comes from a test of the scaling of the curves
with concentration. In the dilute limit the elastic modulus has
to scale linearly with concentration. In entangled solutions,
at least at frequencies reflecting collective dynamic modes of
the network,c-dependence will be stronger than linear. At
high frequencies, when short-scale single-filament relax-
ations are dominating the response, both moduli will scale

FIG. 8. PSD for beads in fd solutions of different concentration.
Higher concentrations have lower PSD values. With this in mind,
the curves for each fd concentration can be identified as follows:
Buffer, 0.8, 11 mg/ml(dotted lines); 0.2, 2, and 14 mg/ml(solid
lines); 0.4 and 5 mg/ml(dashed lines). Inset: A segment of the X
position data for a bead in buffer, which corresponds to the buffer
PSD curve.
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for all concentrations linearly withc again. Figure 10(b)
shows G8sfd divided by the respective fd concentrations.
Curves for concentrations between 0.2 and 2 mg/ml overlap
reasonably well within experimental error. This demonstrates
that entanglement becomes relevant only at concentrations
beyond 2 mg/ml, i.e.,c.50 c* . This result is consistent
with other experiments on orientational dynamics of rod so-
lutions, showing that the naive estimate ofc* =1/L3 seriously
overestimates the dynamic consequences of steric rod-rod
interactions[36,37]. The concentration dependence of the
loss moduli for all concentrations is presented in Fig. 10(c).
Circled points are buffer data and the straight line corre-
sponds to the constant viscosity of waterG9=2phf. The loss
modulus [Fig. 10(c)] changes with concentration also in a
manner that demonstrates increasing entanglement, with the
terminal relaxation regime moving to lower frequencies and
with an intermediate plateaulike regime developing. The fact
that G9 appears to extend beyond the collective-mode(or
plateaulike) regime and approach the single-filament
asymptotic slope of 3/4, whereasG8 ends in the transition
regime is mostly due to the fact that the finite high-frequency
cutoff of the Kramers-Kronig integral strongly distortsG8

about a decade down from the cutoff—a part of the curves
that is not plotted[11]. At frequencies above about 10 kHz,
the low-concentration curves[see Fig. 10(c)], including the
one in pure buffer, curve up, above the straight line corre-
sponding to the loss modulus derived from water viscosity.
The reason for that is the inertia of the solvent[see Sec.
III C ]. The concentration dependence of the loss moduli can
also be visualized by plotting the viscosity[Fig. 10(d)],
which is defined ashs fd=G9sfd /2pf. The buffer and poly-
mer contributions to the stress tensor of the solution, and
hence, the viscous modulus are additive[38]. The quantity
that is measured experimentally is the total viscous modulus
of both the buffer and polymer. In order to test the concen-
tration scaling of the polymerG9, the solvent contribution
has to be subtracted first. In Fig. 10(e), we plot sG9sfd
−Gbuf fer9 d divided by concentration. This plot demonstrates
that all curves approximate a universal line curve at high
frequencies, but deviate from this line at low frequencies in a
concentration-dependent manner.

Figure 11 provides a comparison of our experimental re-
sults with published models. The lowest concentration
sample for which we could reliably measure a storage modu-

FIG. 9. (a) G8sfd andG9sfd for a 0.2 mg/ml fd solution. Low and high sampling rate data are distinguished by grey and black curves,
respectively, for each modulus.(b) Similar data are presented for fd samples of concentration 2 mg/ml and(c) 14 mg/ml. Error bars indicate
the standard deviation of the mean of the averaged data.
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lus was the 0.2 mg/ml solution. At this concentration, rather
close toc*s0.04 mg/mld, we expect to see mainly the moduli
caused by the free rotation of unentangled rods. The moduli
are expected to remain well described by the dilute theory
predictions with the rotational diffusion coefficient replaced

by its reduced form of Eq.(10) as long as the concentration
is not too high abovec* . At low frequencies where internal
dynamic modes play no role, this behavior should be that of
rigid rods, described by well-known models[38] [Eq. (11)].
At higher frequencies internal dynamic modes of the semi-

FIG. 10. (a) G8sfd for beads in fd solutions of different concentration(indicated by numbers in mg/ml). Low and high sampling rate data
are distinguished by grey and black colors respectively for each concentration. Pairs of curves for each concentration are plotted alternately
in solid and dashed lines.(b) G8sfd divided by concentration.(c) G9sfd with buffer data(circles), and the theoretical loss modulus of buffer
solution (solid black straight line). (d) The viscosityhsfd=G9sfd /2pf and (e) sG9sfd−Gbuf fer9 d divided by concentration.
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flexible rods will become apparent. A model that describes
the dynamics of dilute solutions of semiflexible polymers is
that of Shankar, Pasquali, and Morse[17], which is strictly
valid in the limit of long filaments(L@Lp, see Appendix A,
Sec. 2). Entanglements at higher concentrations will influ-
ence only the collective dynamics visible at the low-
frequency end of the spectrum. We use the entangled theory
of Morse[14,15] to compare to our high-concentration data.
This theory is also strictly valid for long filamentssL.Led.
The storage modulus[Fig. 11(a)] measured for the dilute
sample follows relatively closely the dilute rod limit. The
slight shift of the data from the prediction of the dilute theory
likely indicates that polymer hindrance is beginning to take
place. The onset of the plateau occurs atf rot,16 Hz, corre-
sponding to a rotational relaxation timetrot of about 10 ms.
The dependence of the rotational diffusion coefficient on
concentration at high ionic strength for fd virus has been
studied using dielectric birefringence by Krameret al. [37].
They reported a diffusion coefficient ofDro=21.7±0.5 s−1

belowc* . Up to a concentration of around 8c*s0.32 mg/mld,
they have shown that the measured rotational diffusion val-
ues follow the relationship by Teraoka and Hayakawa[49]
and Teraoka, Ookubo, and Hayakawa[50]

Dr

Dro
= S1 +

yL3

b1/2D−2

, s10d

whereb=1.353103 is a numerical factor andy is the num-
ber of polymers per unit volume. Using Eq.(10), the rota-
tional diffusion coefficient for the 0.2 mg/ml solution is pre-
dicted to be 17 s−1. This corresponds to a rotational
relaxation timetrot=1/6Dr of 9.8 ms or a characteristic fre-
quency off rot=1/s2ptrotd=16.2 Hz. The expression for the
dilute rigid-rod elastic modulus[38] is

G8svd = S0.6kBTy v2

36Dr
2 + v2 D , s11d

wherev=2pf. To obtain a more quantitative comparison, we
fit this expression to the 0.2 mg/mlG8 data(Fig. 12) result-
ing in a rotational diffusion coefficient of 11.5 s−1, in good
agreement with the birefringence results. In Fig. 12 we plot
the 0.2 mg/ml low sampling rate elastic modulus data with
the dilute rigid-rod theory expression of Eq.(11) and the
dilute semiflexible theory curve using the fitting parameter of
11.5 s−1 for the rotational diffusion coefficient for both
theory curves. The arrow in Fig. 12 indicates the frequency
1/s2ptrotd=11 Hz, below which the modulus is expected to
relax by rotational diffusion(see Appendix, Sec. 2). Al-

FIG. 11. (a) G8sfd data for a 0.2 mg/ml fd solution taken at low and high sampling rates(open circles and squares, respectively), and for
a 14 mg/ml fd solution taken at low and high sampling rates(open diamonds and triangles, respectively). Theory curves are shown for
0.2 mg/ml dilute(grey dashed line), tightly entangled(black dashed line), and for 14 mg/ml dilute(grey solid line), tightly entangled(black
solid line). The same labeling scheme is used in(b) to plot G9sfd using filled symbols for data points. Error bars indicate the standard
deviation of the mean of the averaged data.

FIG. 12. G8sfd of the 0.2 mg/ml low sampling rate data. The
error bars indicate the standard deviation of the mean of the aver-
aged data. The solid line is the dilute rigid rod theoryG8 curve. The
dashed line is the dilute semiflexible theoryG8 curve. The arrow
indicates the frequency 1/s2ptrotd.
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though the concentration is about five times higher thanc* ,
the results are clearly not well described by the entangled
model plotted in Fig. 11(a) (see Appendix, Sec. 4). Figure
11(a) also comparesG8 for the most concentrated solution
s14 mg/mld with the two models. This concentration is far in
the entangled regime and, consistent with that, the dilute
model does not fit the data.

In the tightly entangled limit(see Appendix, Sec. 4), the-
oretical modeling is usually based on the concept of a tube in
which each polymer exists[51] formed by intersecting fila-
ments. It is often permissible to neglect the dynamics of the
tube and only consider the motion of the polymer within a
fixed tube because the relaxation of the tube is coupled to
slow collective dynamics, whereas the motion of the en-
trapped chain is much faster single-chain dynamics. The en-
tanglement lengthLe is roughly the contour length between
successive collisions of the polymer with the tube wall, de-
pending on concentration and persistence length[Eq. (A2)].
The viscoelastic properties of the solution in the low fre-
quency regime strongly depend on this length. For the tube
model to be valid and particularly for the above-mentioned
separation of time scales to apply,L must be much larger
than Le (this is a definition of the tightly entangled limit).
There are two ways to obtain an estimate for the entangle-
ment length. One method suggested by Morse[15,52] is to
use F-actin data reported in the literature for the plateau
modulusG8 (see Appendix, Sec. 4). The other way is to use
a different treatment of Morse[51] to calculate the tube di-
ameter for tightly entangled semiflexible solutions and ex-
tract the entanglement length from the tube diameter(see
Appendix, Sec. 4). The two methods lead to entanglement
lengths that differ at most by 30% for concentrations higher
than 5 mg/ml. Inspecting the ratioLe/L shows that the 5, 8,
11, and 14 mg/ml fd solutions used in the experiments lie in
the entangled regime, although the level of entanglement is
weak, as the ratio remains on the order of unity. For the most
concentrated solution of 14 mg/ml, the entangled model
captures well the magnitude of the measured modulus[Fig.
11(a)]. The curve shape, however, is not well fitted. The lim-
ited applicability of the tube concept to our system and the
difficulty in finding an exact method of obtaining the en-
tanglement length makes the low-frequency, high-
concentration theory prediction even less quantitatively reli-
able than the theory curves suggest in the figures.

The same comparison with theory is shown in Fig. 11(b)
for the loss modulusG9 including the solvent contribution.
Again for the low concentration of 0.2 mg/ml, the dilute rod
limit is a reasonable fit, while at the highest concentration the
magnitude of the modulus is well explained, the curve shape
is again different. The crossover from low-frequency collec-
tive dynamics to high-frequency single-filament dynamics is
expected to occur at a frequency larger than 1/s2pted
=400 Hz(see Appendix, Sec. 4). The loss modulus is seen to
approach the predicted theory curve in Fig. 11(b) at frequen-
cies above about 1 kHz, after strongly deviating in shape in
the intermediate frequency range.

While G9 thus appears to approach a high-frequency
power-law regime,G8 clearly does not, and therefore the
exact form of that power law cannot directly be read off the
data. There is, however, a convenient method[53] to indi-

rectly infer high-frequency dynamics from intermediate-
frequency data by making two simple assumptions:(i) there
is a (single-filament) scaling behavior at high frequencies
where moduli scale linearly with concentration, independent
of entanglement, and(ii ) there is a plateau regime where the
elastic modulus scales with a power larger than 1 with con-
centration due to entanglement. At high frequencies, the
complex shear modulus of semiflexible polymer solutions is
predicted to scale asf3/4 and be dominated by single-filament
tension dynamics[14–16]. The modulus will, therefore, be
linear in concentration for such high frequencies. TheG9
curves of Fig. 10(e) can be seen to approach this limit.

With the above assumptions the shear modulus can be
written as[53]

Gsfd = g0c
a + g1cfb, s12d

whereg0 andg1 are constants. In Fig. 13(a) we plot G8 and
G9−Gbuf fer9 for all concentrations. We then(arbitrarily)
choose one reference curve and find for each concentrationc
a factorhscd to multiply the modulus axis and a factorjscd to
multiply the frequency axis, such that both the loss modulus
at high frequencies and the elastic modulus in the plateau
regime superimpose[Fig. 13(b)]. With these factors we can
rewrite Eq. (12) to describe the universal curve, which
should be, by construction, concentration independent:

hscdGff · jscdg = g0c
ahscd + g1cff · jscdgbhscd. s13d

For the right-hand side to be concentration independent,
cahscd andc· jbscd ·hscd have to be constants, i.e.,

logfhscdg = const −a logscd, s14d

and

logfc ·hscdg = const −b logf jscdg. s15d

Equations(14) and (15) are plotted in Figs. 13(c) and
13(d), respectively. From these curves we read off the pla-
teau modulus concentration dependence ofa=1.36 (Pear-
son’s r =0.99) and the high-frequency power-law exponent
dependence ofb=0.63 (Pearson’sr =0.98). The power 1.36
is consistent with the predicted exponent of 7/5(Morse)
from the tube model. Thus even though the data show no
well-developed plateau due to the short length of the fila-
ments, the arguments leading to the scaling prediction in this
collective dynamics regime appears to be valid. The high-
frequency scaling is expected to be 3/4. This is only margin-
ally consistent with our results. One reason for discrepancy
might be that the transition between plateau and asymptotic
power law may show additional structure. Morse predicts an
intermediate regime caused by axial relaxation of tension
through the free end of the filaments[15,17]. This is ex-
pected to change the power slope ofG9 to closer to 1, steeper
than we concluded from the scaling analysis. On the other
hand, the broad transition from the collective(plateaulike)
regime might have biased the result toward a smaller than
the true power-law exponent.

V. CONCLUSIONS

We have applied a passive microrheology technique to
extract the elastic and viscous shear moduli of solutions of
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structurally well-characterized monodisperse semiflexible
filamentous bacteriophage, covering more than six decades
between 10−2 and 100 kHz. The concentrations of the solu-
tions spanned the dilute, semidilute, and entangled regimes.
Shear moduli were measured covering again about six de-
cades in magnitude, from 10−3 to 1000 Pa. This demonstrates
the unique capabilities of microrheology compared to con-
ventional macroscopic methods. Where there are theoretical
models, we found reasonable agreement, but there is pres-
ently no applicable model describing the collective entangled
dynamics of short semiflexible polymers, leaving a challenge
to the community.
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APPENDIX

The appendix contains a sketch of the relevant theoretical
treatments of semiflexible polymer systems in the dilute, se-
midilute, and tightly entangled limits and a discussion of the
physical mechanisms and time dependence of the different
contributions to the shear modulus of such systems.

1. Modulus

The theoretical approach of Morse[14,15] uses the
Kramers-Kirkwood theory of viscoelasticity, which models a
polymer as a primitive chain consisting of beads, which are
point centers of hydrodynamic resistance in a solvent of vis-
cosity h subjected to a macroscopic fluid velocity with a
spatially homogeneous rate of deformation tensor. The stress
tensor of such a solution has a contribution from the solvent
and a contribution from the polymers inside the solvent.
Forces between different polymers are seen to be negligible
and only intramolecular contributions within a polymer are
considered. Once the total or partial stress tensor is derived,
the corresponding dynamic modulusGstd is obtained by
looking at the relaxation of stress when the system is sub-
jected to a step strain at zero time. The complex modulus
Gsfd=G8sfd+ iG9sfd is then the Fourier transform of the dy-
namic modulus whereG8 andG9 are the elastic and viscous

FIG. 13. (a) G8sfd (dashed lines) andG9sfd−Gbuf fer9 (solid lines) of low sampling rate data for fd concentrations 0.2, 0.4, 0.8, 2, 5, 11,
and 14 mg/ml. The curves follow the trend of higher modulus values for higher concentration solutions.(b) The result after scaling the
frequencies and moduli in order for theG9sfd curves to overlap at high frequency and the plateau height ofG8 to coincide.(c) Plot of the
scaling parameter multiplying the modulihscd, as a function of concentrationc, in mg/ml. (d) Plot of hscd times c as a function of the
parameter multiplying the frequenciesjscd.
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moduli, respectively. The expression for the shear modulus
of a solution of semiflexible polymers has the general form

G = Gsolvent+ Gcurve + Gorient + Gtens, sA1d

where the curvature term arises from both bending forces
and the orientational entropy of the links. The orientational
term is a residual contribution of the orientational entropy
arising from the two end links of the primitive chain. The
tension term arises from the constraint forces that resist ex-
tension of the links of the chain. An outline of the different
approaches of treating dilute, semidilute, and tightly en-
tangled solutions is presented below along with the time de-
pendence and the physical origin of the relevant time scales
of the dynamic modulus for each concentration regime.

2. Dilute theory

The approach outlined below for the dilute theory of
semiflexible polymers is that of Shankar, Pasquali, and
Morse [17]. The approach is based on solving a Langevin
equation, which describes the Brownian motion of a single
free-draining wormlike chain in an imposed mean flow. The
equation relates the hydrodynamic frictional forces acting on
the chain with the bending energy force and the constraint
(tension) force that enforces inextensibility of the chain. The-
oretical curves presented in our paper correspond to an ana-
lytical approximation of the full theory.

Time scales

(i) The shortest time scale is that required for strain and
tension to diffuse the entire length of the chainti ,L8/Lp

5.
The modulus for times much shorter thanti is expected to
decay ast−3/4. (ii ) The next relaxation time corresponds to
the longest wavelength bending mode of a semiflexible rod
of lengthL, t',L4/Lp. For timesti , t,t', the modulus is
expected to decay ast−5/4. (iii ) The longest relaxation time
is due to the rotational diffusion of the rods in the solution
trod,L3. This relaxation time is the terminal relaxation time
of flow-induced anisotropies in the distribution of rod orien-
tations. The modulus for times much longer thantrod is
expected to decay ase−t/trod, as for rigid rods.

The time scales form a hierarchyti ,t',trod and
become more separated as the semiflexible rods approach the
rigid-rod limit, i.e., asL /Lp decreases. For the fd system
whereL /Lp<1/2 the intermediate time regime will shrink
leading to a featureless crossover fromt−3/4 to ex-
ponential rod diffusion decay.

The curves for the dilute semiflexible theory of Figs.
11(a), 11(b), and 12 are obtained from the analytical approxi-
mation(Eqs. 141 of Ref.[17]) of the full theory(Eqs. 124 of
Ref. [17]). The input parameters to the model for fd solutions
are the diameter of the filamentd=7 nm, contour lengthL
=0.9 mm, persistence lengthLp=2.2 mm, concentration of
the solution c, solution temperature,T=21.4°C, and the
solvent viscosityh=0.969310−3 N·s /m2.

3. Semidilute theory

As the solution concentration is increased above the dilute
limit, polymers start to hinder each other leading to a reduc-

tion in the rotational diffusion coefficient, but fluctuations in
the bending modes of the polymers are unaffected. As the
concentration approaches the tightly entangled limit, both the
orientation and shape of polymers are affected by the pres-
ence of other polymers. A tube picture for the polymers starts
to develop. However, the form of the moduli in this regime
has not been worked out analytically.

4. Tightly entangled theory

Recent theoretical treatment by Morse[14,15] describes
the viscoelastic behavior of tightly entangled solutions of
semiflexible polymers. This concentration regime is charac-
terized by the following:(i) polymers exist on short time
scales within a tube of diameterDe!Lp, (ii ) motions along
the tube contour are resisted by the viscous drag due to the
solvent, (iii ) the shape of the tube deforms affinely in re-
sponse to macroscopic deformation of the solution, and(iv)
excluded-volume interactions between polymers are ne-
glected except for keeping the polymer in its tube.

The entanglement lengthLe is a phenomenological pa-
rameter in the order of the contour length between points on
the filament where collisions with the walls of the tube occur.
The onset of the tightly entangled regime is roughly esti-
mated to occur when the contour length equals the entangle-
ment length.

Time scales

(i) The time scaleti required for tension to diffuse the
length of the chain has the same form as the dilute case.(ii )
The relaxation timete, of a bending mode of wavelength
equal to the entanglement lengthLe of the polymer in its tube
is the relevant time scale that corresponds tot' in the dilute
case. It has the same form ast' with the contour length
replaced by the entanglement length. The modulus at time
scales belowte has at−3/4 dependence. This modulus is from
the single-filament dynamics contribution, i.e., it is propor-
tional to concentration. It does not depend on the degree of
entanglement of the polymer in the network, and it has the
same form in dilute and entangled solutions.(iii ) For the
entangled case, a polymer exists in a tube and diffuses along
its contour length, a process that is called reptation. The re-
laxation time associated with this diffusion is of the order of
time needed for the polymer to diffuse its own contour length
trep,L3. (iv) The longest time scale, which corresponds to
its dilute counterparttrod, has the length dependencetrod
,L2Lp, but it is much larger than the dilute case since in a
concentrated solution, the polymer is much more constrained
and must diffuse many times its own length before its orien-
tation changes.

For f ø s2pted−1, the decay of stress is seen to be mainly
the result of diffusion due to reptation for curvature and ori-
entation stress terms, whereas forf @ s2pted−1, the modulus
is expected to be dominated by the tension component.

The curves for the entangled semiflexible theory plotted
in Figs. 11(a) and 11(b) are obtained from a numerical evalu-
ation of Eqs. 124 of Ref.[15]. The input parameters to the
model for fd solutions are the diameter of the filamentd
=7 nm, contour lengthL=0.9 mm, persistence lengthLp
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=2.2 mm, concentration of the solutionc, solution tempera-
ture T=21.4°C, solvent viscosityh=0.969310−3 N·s /m2,
and the entanglement lengthLe.

One method to obtain the entanglement length suggested
by Morse[52] is to use known data of F-actin solutions to
estimate this parameter. There is an undetermined prefactor
in the equation relating the entanglement length to the per-
sistence length and contour length density[14]

Le = br−2/5Lp
1/5. sA2d

The prefactorb is assumed to be a universal parameter
independent of the kind of polymer system under study.
Sackmann and coworkers reported values for the storage pla-
teau modulusGplateau8 ,1–2 dyne/cm2 for F-actin solutions
at a concentration of 1 mg/ml. The Morse theory[15] gives
the following expression for the plateau modulus assuming it
is dominated by a curvature stress contribution

Gcurve8 =
7

5

r T

Le
. sA3d

In order to obtain a plateau modulus of 1 dyne/cm2, which is
comparable to the experimental result, and using values for
the persistence lengthLp=17 mm, contour length densityr
=39 mm−2, and temperatureT=295 K, the value for the en-

tanglement length of actin solution is found to beLe
=2.2 mm, and so the prefactorb is estimated to be 5.4.
Equation(A2) is then applied to fd, with a persistence length
Lp=2.2 mm and the contour length densityr
=hffdgsmg/mldLscmdj /mpsmgd, where mp is the polymer
mass of fd, to obtain the concentration dependence of the
entanglement length.

The relation between the entanglement length and tube
diameter was derived by Odijk[54] Le,De

2/3Lp
1/3. The

other way to determine the entanglement length is to use a
model, for estimating the tube diameter, and relate it to the
entanglement length. Such a model has been proposed for
tightly entangled semiflexible solutions[51]. Two different
mechanisms are provided that give different power-law de-
pendence on concentration and persistence length. One gives
a detailed description of the interaction of a polymer with
single nearby polymers, but neglects the collective elastic
relaxation of the network. This approach yieldsLe

BCA

=3.45r−2/5Lp
1/5 (Eq. 47 in Ref. [51]). The other approach

treats the surrounding network around a polymer as an elas-
tic continuum with shear modulus equal to the self-
consistently determined plateau modulus of the solution and
gives Le

EMA=1.70r−1/3Lp
1/3 (Eqs. 9 and 65 in Ref.[51]).

We use a combination of both approaches that was suggested
by Morse[52] Le=ssLe

BCAd4+sLe
EMAd4d1/4.
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