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Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry
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Semiflexible polymers are of great biological importance in determining the mechanical properties of cells.
Techniques collectively known as microrheology have recently been developed to measure the viscoelastic
properties of solutions of submicroliter volumes. We employ one such technique, which uses a focused laser
beam to trap a micron-sized silica bead and interferometric photodiode detection to measure passively the
position fluctuations of the trapped bead with nanometer resolution and high bandwidth. The frequency-
dependent complex shear moduld§(f) can be extracted from the position fluctuations via the fluctuation-
dissipation theorem and the generalized Stokes-Einstein relation. Using particle tracking microrheology, we
report measurements of shear moduli of solutions of fd viruses, which are filamentous, semiflexible, and
monodisperse bacteriophages, eachgh®long, 7 nm in diameter, and having a persistence length of#h2
Recent theoretical treatments of semiflexible polymer dynamics provide quantitative predictions of the rheo-
logical properties of such a model system. The fd samples measured span the dilute, semidilute, and concen-
trated regimes. In the dilute regin®"(f) is dominated by(rigid rod) rotational relaxation, whereas the
high-frequency regime reflects single-semiflexible filament dynamics consistent with the theoretical prediction.
Due to the short length of fd viruses used in this study, the intermediate regime does not exhibit a well-
developed plateau. A dynamic scaling analysis gives rise to a concentration scatihéf 6f=0.99 in the
transition regime and a frequency scalingf@f®3 (r=0.99 at high frequencies.
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I. INTRODUCTION others. The distinctive features of single filaments as well as

Characteristic lengths that describe polymer solutions ar86tWorks and solutions of semiflexible polymers have only
monomer diameted, mesh size or effective entanglement 'ecently begun to be explored, both experimentgliy13
length L, contour lengthL, and persistence length,. L, is and theoretlcally[14—2q A mu[tltude of charact'er!stlt':
the length traversed along the filament contour before théength scales reflected in a multitude of characteristic time
tangent vector thermally randomizes its orientation; it is pro-scales makes, in general, for very complex behavior, even in
portional to the bending stiffness of the polymer. The ratiochemically homogeneous systems. A fully quantitative un-
betweenL and L, provides a criterion to distinguish two derstanding of the mechanics of a cell, with typically im-
asymptotic classes of polymers. Flexible polymers are chammense chemical and structural complexity, is at this time far
acterized by, <L, rigid-rod polymers byt ,>L. Real poly- ~ from being reached. Progress is being made with relatively
mers are somewhere between the extremes, and the behavédmple model systems, and the trend is to tackle increasingly
observed depends, in general, on the length and time scaleemplex systems.
of interest. It is useful to define a third class of polymers in  Most polymer solutions exhibit both viscous and elastic
the intermediate regime, namely semiflexible polymers, charproperties. The physical quantity commonly employed to
acterized byL,~L>d. quantify the viscoelasticity of such solutions is the complex

Examples of semiflexible polymers include some syn-shear moduluss’(f). The most frequently used methods to
thetic polymers, particularly helical polypeptides, such as pomeasure the shear modulus involve placing the samples with
ly(benzyl glutamate(PBLG); aromatic polyamides, such as volumes of order milliliters in chambers of well-defined ge-
kevlar and xanthan; and a large variety of biopolymers, parometry (parallel plates, cone and plate or concentric cylin-
ticularly DNA, various protein polymers, such as F-actin,ders [21]). The shear modulus can be extracted from the
microtubules and intermediate filaments, and also filamenrelation between applied shear force and measured strain or
tous viruses, one of which we study in this paper. Semiflexvice versa.
ible polymers are of great biological importance. The cytosk- Recently, several techniques, collectively called microrhe-
eletal filament F-actin, for instance, is involved in many ology [11,22—-2%, have been developed to probe, on micro-
activities, such as cell motility1], and muscle contraction scopic scales, the material properties of systems, ranging
[2]. Networks of F-actin polymers, which are found prefer-from simple polymer solutions to the interior of living cells.
entially in the cortex of most eukaryotic cells, also determineAll the related methods use microscopic particles embedded
the mechanical properties of cells and provide a crucial linkn the sample and detect either thermal fluctuations of those
in mechanosensing biochemical networl&. Theoretical particles(passive microrheologyor their response to applied
models for flexible[4—6] and rigid-rod[7,8] systems were forces(active microrheology Motivations for miniaturiza-
developed in the late 1970s by de Gennes, Doi, Edwards, aritbn have been(i) In many cases, and especially in biologi-
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cal systems, only small volumes of material, typically micro-
liters, are available(ii) A microscopic probe offers the
possibility to study inhomogeneities in the elastic properties
of the polymer network on micrometer scales, for example,
directly in the cytoskeleton of cells. In inhomogeneous ma-
terials, the ability to study them with probes spanning some
of the characteristic microscopic length scalgsg., ap-
proaching the interchain separation or mesh size of) géls

also lead to important new insights into the microscopic ba-
sis of the macroscopic viscoelasticity of such systeiiis.
Microrheology readily allows for measuring viscoelasticity
at higher frequencies, above 1 kHz or even up to MHz, be-
cause inertia of both the probe and embedding medium can
be neglected at such small length scd$,27. (iv) In net-
works of semiflexible polymers, nonlinear response occurs
typically for small strains, and an advantage, particularly of
using the passive technique, is that linear response param
eters are measured by definition.

The microrheology method we use in this study is based

on recording the thermal fluctuations of micron-sized beads . ) .
embedded in the viscoelastic medium to be studied. A single F'C- 1. AFM dry scan of fd virus filaments on a glass-slide
probe bead is observed at a time by laser interferometry in 3urfa.°e‘ Th? virus has a contour length of 9. The.'mag? was
light microscope[11]. Detection by photodiodes ensures aacqwred using the tapping mode of a nanoscope dimension AFM.
bandwidth of detection between about 0.1 Hz and 100 kHz ) ) o )
[27]. Frequency-dependent complex shear elastic and lod¥lymer systems in the dilute, semidilute, and tightly en-
moduli [G'(f) and G"(f), respectively are determined from tangled limits and a discussion of the physical mechanisms
the fluctuations of the embedded probes using dispersion r&"d time dependence of the different contributions to the
lations from linear response theofiA]. shear modulus of such systems.

The microrheology study is applied to a well-

characterized model system pf monpdisperse St_amiflexible Il. MATERIALS
rods. The polymer we employ is the filamentdtgoli bac- _ _
teriophage fd, which consists of a single-stranded circular A. Preparation of fd virus

DNA covered with a coat made of identical protein subunits The fd bacteriophages were prepared by a standard
[28,29. This virus system has the advantage that particlenethod[39]. Briefly, freeze-dried fd and their host E-coli
length is extremely monodisperé&9 um) [30,3Y. The per-  bacteria(strain K38 were purchased from the American
sistence length is 2.Am [32-34, and rod diameter is 7 nm. Type Culture CollectioiManassas, VA A large amount of
An atomic force microscopy image of virus particles ad-the progeny phages were separated from the bacterial media
sorbed to a glass slide is shown in Fig. 1. At pH 7, the virushby multiple steps of sedimentation and resuspension, fol-
particles have a net negative surface chd8$#, which pre-  lowed by a final separation step using the cesium chloride
vents aggregation. Our experiments were performed at suffdensity gradient method. The virus suspensions were kept in
cient ionic strengt50 mM, monovalentto largely screen a (5 mM imidazole, 1 mM Naly) buffer at pH 7.
electrostatic interactiong6,37. The fd virus provides a mi-
croscopically well-controlled model system of a semiflexible
polymer, which we use to test viscoelastic properties in con-
centration regimes spanning the dilute, semidilute, and con- A concentrated stock solution of fd was prepared at
centrated regimes. We compare our results to theoretical prd&5 mg/ml, pH 7, and ionic strength =50 mi mM imi-
dictions in the asymptotic regimes of dilute rods at lowdazole, 1 mMNaN;, and 46.5 mM KCJ. The concentration
frequencieg38] and of single-filament dynamics at high fre- was determined by UV absorption at269 nm(extinction
quencieg15,16. There is currently no theoretical treatment coefficient £=3.84 cnt/mg) [31], using a Shimadzu UV
applicable to semidilute solutions of short semiflexible poly-1601 Spectrophotometer. Samples for microrheology were
mers, and we hope to stimulate further modeling efforts byprepared in disposable sample chambers of volur28 ul,
presenting our experimental results. constructed of a microscope coverslip mounted on a micro-
The rest of the paper is outlined as follows. In Sec. Il wescope slide with double-stick tage-70 um deep. The con-
describe the methods of preparation and sample handling @entrated stock solution of virus was diluted to the desired
the virus solutions. Section Il provides an outline of thefinal concentration by adding a buffer solution of the same
microrheology technique used, a description of the experitonic composition(see aboveand a solution of probe par-
mental setup, and data analysis methods. Experimental réicles (silica beads, diameter 50m <10% standard devia-
sults and discussion will be presented in Sec. IV. Concludingdion, 10% solids by mass, purchased from Bangs Laborato-
remarks will be made in Sec. V. The Appendix contains aries, Indianapolis, IN The beads in the final sample were
sketch of the relevant theoretical treatments of semiflexiblaliluted by ~1:1000. The sample was then pipetted into the

B. Sample preparation

021503-2



MICRORHEOLOGY OF SOLUTIONS OF SEMIFLEXIBLE. PHYSICAL REVIEW E 70, 021503(2004)

chamber, which was sealed with vacuum grease, and thdrequencies and by design directly excites shear modes, thus
mounted onto the microscope stage. avoiding these complications.

B. Experimental setup

IIl. MICRORHEOLOGY METHOD Microrheology was performed in a custom-built light mi-
o _ croscope using a focused laser beam and laser interferometry
A. Principle of the technique to optically trap the probe particle and to record the thermal

The microrheoloay technique used is a passive one ifnotions of individual probe particles as described in detail
! gy que U I passiv ! reviously[11,4Q. To detect motions of beads imbedded in

which the thermal fluctuations of a micron-sized bead ar X ; .
ﬁ\e gel we used an interferometpt0] with near-infrared

used to calculate the response function of the bead by th ; -
fluctuation-dissipation theorem. The procedure outlined be:2>¢! fllumination(1064 nm cw, Topaz 106c, Spectra Phys-

low is that of Schnuret al.[11]. The complex single-particle ics, Mountain View, CA. The laser beam passes through an

funcii A= o (Fria(F lates the Fouri optical isolator, which prevents back reflections into the la-
response functiona(f)=a'(f)+ia’(f) relates the Fourier go then through a beam expander, which increases the effi-

transformx(f) of the bead displacementt) to the Fourier  ¢iency of optical trapping. A combination of half wave plate
transformF(f) of the forceF(t) acting on the bead and polarizer control the power of the beam, and two lenses
(f) = a(F)F(F) (1) in a telescope configuration allow control of the position of
X @ ' the beam focus in the plane perpendicular to the beam direc-

The fluctuation-dissipation theorem provides the link be-tion. The beam enters the microscope after reflection off a

tween the single-sided Power Spectral DengR$D) dichroic mirror and is brought to a focus in the sample cham-
ber by a high NA objectivé100x NA 1.3, Neofluar, Zeiss,

, 2 . N omift! s Jena, GmbH The laser light emerging from the condenser
S(f) :“mt—m?Xt(f)Xt(f)’ wherex(f) = X(t")em dt lens, after passing through the sample, is projected onto a
“u2 quadrant photodiode in such a way that the back focal plane
(2 of the condenser is imagdd0]. An outline of the setup is
presented in Fig. @), and a sketch of the sample chamber
and detection scheme is presented in Fidp).2The signals
o from the four quadrants of the photodiode are combined to
o'(f) = ——= (), (3)  obtain X and Y voltages corresponding to the displacements
2KkpT of the bead in these directions in the plane normal to the
whereky, is the Boltzmann constant, anflis the solution ~Propagation direction of the laser. The output voltages are,
temperature. after analog amplification and preprocessing, recorded using
A Kramers-Kronig relation can then be used to calculate?? A—D interfacg200 kHz, ChicoPlus, Innovative Integra-
the real part of the response function, provided @4f) is tion, Simi Valley, CA and data acquisition software written

known over a large enough frequency rarg] in Labview (National Instruments, Austin, T)XAIl experi-
ments reported here were performed at two sampling rates,

- = _ 20 kHz and 195 kHZantialias filtered at about 10 kHz and
a'(f) :4J dt cog27f t)f déad’(§)sin2mét).  (4) 100 kHz, respectively High bandwidth of detection was
0 0 made possible by using a special-purpose fully depleted

The connection between the response of the bead and tisYPe Silicon photodiodg¢YAG444-4A, Perkin Elmer, Vau-
complex shear modulu&(f)=G'(f)+iG"(f) of the vis- dreuil, Canadadenoted Si-HB] [27]. This diode was de-

coelastic medium surrounding the bead is assumed to be prgi_gned for fast detect_ion of 1064 nm _Ii_ght and was operated
vided by the generalized Stokes-Einstein rela@SER at a 100 V reverse-bias voltage. Position data for each bead

t/2

and the imaginary part of the response function by

[11] was normally recorded until two million data points were
acquired per channel. Autocorrelations and Kramers-Kronig
1 integrals were performed using software developed in the

G(f) :m* (5) lab, written in C*. The resulting response data were ana-

lyzed with Mathematica 4.@Nolfram Research, Champaign,
whereG’ andG" are the elastic and loss moduli respectively,|L) to obtain the shear moduli.

anda is the radius of the bead. This expression reduces to the After loading a sample, the optical trap was used to posi-
familiar result for a spherical probe particle in a purely vis- tion the 5um diameter beads about 30n above the bottom
cous medium of viscosity, G(f)=-i27f#. The GSER does surface of the chamber to minimize the surface boundary
not take into account the possibility of the probe particleeffect. The influence of the surface effect was tested at a
coupling to modes of the system other than shear modes, i.eaumber of distances from the microscope slides, and at larger
compressional modes, or the importance of inertial effects ofhan 20um, the obtaineds’ and G” values were found to
the particle and medium at high frequencies. The validity ofvary less than 5% and thus the error was deemed negligible
the GSER in a viscoelastic two-fluid medium model in the(data not shown

continuum limit has been addressed by Levine and Lubensky o

[26]. The GSER was found to be a good approximation to C. Calibration

the full-response function in this model within a certain fre- Position data were recorded at different laser powers
guency regime. Traditional rheology operates at much loweranging from 6 to 200 mW, measured just before the beam
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FIG. 2. (&) An outline of the essential components of the laser ) ) )
and optical pathgb) Sketch of an fd sample with a bead in a laser FIG. 3. (a) PSD of nine different beads in buffer. The values are

trap and a quadrant photo diode, which detects the position of thgalculated from X and Y voltage data for each bead. The dotted line
bead. indicates the frequency above which the signal is strongly attenu-

ated by an anti-aliasing filter. Inset: ¢losed circlesand Y (open

) . . circles calibration factors for each of the nine beads obtained from
enters the microscope optics. The actual power in the specinejr respective power spectra. The straight lines show the averaged

men is about a factor of 2 lower, depending somewhat ORajipration factors over the nine beads fors6lid) and Y (dasheg
beam diameter. The calibration factRrfor each power and girections.(b) The X and Y power spectra @) averaged over all

direction relates the quadrant diode output voltage to th@eads.

actual position of the trapped bead with respect to the trap

center. The calibration factor is obtained by observing thecalibration factomethod ong One could also use a form of
thermal fluctuations of beads in buffer solution taken at thedhe PSD(which includes solvent inertial effecf7,43), fit

same power settings as for the actual samples of intereff€ data to it, and extrack, f ; from the fit (method two.
[41]. The PSD of a bead in buffer has a Lorentzian form Both methods were compared and calibration factors were

found to agree within 5%. PSD data for one power setting,
S fg before applying calibration factors, taken for nine different
Sf) = F24§2 (6) beads in buffer are shown in FigB. The calibration factors
¢ extracted from these PSDs are shown for the nine beads in
where S, is the low-frequency plateau value, afidis the the inset along with the average value for each direction.

corner frequency. The calibration factor[#2] These average values were used to convert diode voltage
values into position data. From the spread in the X- and
ko T Y-calibration factors, we estimate a polydispersity in bead
R(M/V) = W- @) size of 9.3% standard deviation. The PSDs for motion in the

X- and Y-directions, respectively, averaged over all beads are
In the limit of high frequency, but before solvent inertial presented in Fig. (®).

effects become significants, f 5:8 f2 and so the high- Averaged PSDsgover nine beads and both directiprase
frequency points o6 f2 can be used in Eq7) to obtain the  shown in Fig. 4 along with their calibration factaiasey for
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i By iy Mobiies B i are higher than the straight-line Stokes relation at frequen-
_ 10 - o — cies above 5 kHzindicated by an arrow in Fig.)5 The
I - b= — 12w reason for this is that solvent inertia can no longer be ne-
R : S A glected at such high frequencif7,43.
> i . 1 i 200 mW
% Jgo e 20t T e e 77777777777777777777 | D. Trap correction
% | § j 3 i A simple viscous fluid, such as the watery buffer, has no
8 g2l & 10 e | elastic modulus, but on computing’(f) from the buffer
& i ggg L 1 . = | PSD data, we find frequency independ@&itvalues varying
g . "%EZ :‘ with the trapping laser powgiFig. 5. These observed ap-
S 1077k A i parent moduli are due to the harmonic confinement of the
- © Power (mW) ] beads by the laser trap. In a viscoelastic sample, such as the

—_

<
n
o

T R T E fd solutions, this trap-generated modulus adds to the actual
¢ 1 1|9r 1: H1° w1 elastic modulus of the sample while it does not influence the
equency (Hz) viscous modulus. In order to obtain the true fd elastic modu-

FIG. 4. PSD averaged over several beads in buffer for five dif-lus’ the trap stiffness must be corrected for. The relation-

ferent laser powers. The corner frequency for each power is indi-Ship between the response functiafy(f), which reflects

cated with an arrow. Inset: Calibration factors of all beads for xthe elastic confinement by the polymer network, not includ-

(crossepand Y (dashedirections for each of the five laser powers. INg the trap effect, and the measured complex response
Cmeasured!S [44]

five different power settings. The corner frequencies for each

power are indicated with arrows, and are seen to increase Qrye = :

with power as expected, whereas the low-frequency plateau 1~ K@measured

values are seen to decrease with increasing power, again @$ich upon inversion using the GSER(. (5)] gives

expected41].

We used Eqs(3)—<(5) to calculate the shear loss modulus
from the buffer PSDs for a wm diameter bead. The loss
moduli measured at two sampling rat¢20 kHz and )
195 kHz are plotted in Fig. 5filled symbolg. The data The trap stiffness can be_ calculatptl] from the corner
agree well with the expected straight line based on thére_quency of the data taken in bu_ffer at the same laser power,
Stokes drag loss modulus relati@f=277f (dashed ling ~ Using x=2myfc, wherey=6m7 a is the Stokes drag on the
The Viscosity of Watern was 0.96% 10‘3 Pa-sec at the bead. Horizontal lines @/:K/(67T a.), with « derived from

measured room temperature Of 21.4°C. m@data points f|tt|ng Lorentzians to the PSDS, are plotted in F|g 5 paSSing
through the corresponding apparedt(f) curves, derived

from the Kramers-Kronig integrals.

For fd concentrations below 0.2 mg/ml, the trap stiffness,
even at low laser power, dominates the modulus such that
with experimental noise, it becomes unreliable to extract the
fd elastic modulus. At concentrations between 0.2 and
2 mg/ml, the trap dominates only at low frequencies,
whereas the elastic modulus of the fd solution, which in-
creases with frequency, dominates at the higher frequencies.
Small bead-to-bead variations ik, coming mainly from
polydispersity in bead radius, cause large errors in the cor-
rected elastic moduli at low frequencies when one uses the
buffer experiments at the respective laser power to correct
for the trap. Therefore, we used the average over the first few
flat points of the uncorrecte@’ curves themselves to sub-
tract from those curves to correct for the trap effect. An
example of this trap correction in a 2 mg/ml fd solution is

FIG. 5. G'(f) (open symbolsof beads in buffer for five differ- shoyvn in Flg._6. Th,e 2 mg/ml fd PSD is shown in Figajs
ent laser powerss” data was averaged over three powers taken afSClid black ling with the buffer PSD at the same laser
a sampling rate of 20 kHdilled inverted trianglesand averaged POWer (solid grey ling as a reference. The corresponding
over two powers taken at a 195 kHz sampling réiided dia-  €lastic modulus is shown in Fig.(§ (circles. The low-
monds. Lines areG’ = x/6ma, wherex is the trap stiffness, amglis ~ frequency part of the curve asymptotically approaches the
the radius of the bead. The straight li@¥=2m77f for the loss apparent modulus due to the trap. Taking the average of the
modulus in buffer passes through & data points. The arrow first six low-frequency points giveSy,, (solid flat ling). The
indicates the frequency beyond which hydrodynamic effects befd elastic modulugsquaresis obtained by subtractin@{rap
come visible. from the total modulus.

Omeasured (8)

! —_ ! K
Gire = Cmeasured %_ 9

true

—_ _ —_ —_
(=] o o o
=} — N w

3
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3
F
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R A R A trap of varying power(14—140 mW and a wider 830 nm
E,“g‘j;g/ml ) trap of constant low powef<5 mW). The 1064 nm focus
diameter is estimated46] to be about 1.Z2um, and the
830 nm focus diameter was expanded to about four microns
[46] by introducing a 1 mm pinhole in a plane conjugate to
the back focal plane of the objective. A sketch of the setup is
shown in Fig. 7a). As the power in the 1064 nm focus is
more and more reduced, the bead will thermally move to
larger distances from the center of the trap. To the extent that
the bead ventures beyond the linear region of the 1064 nm
beam, the position data and so the PSD as measured by the
narrow beam will be underreported. Figuré)/shows the

i
<
&

i
=
3

i
e
©

10-21 |
Slope -1.75

Power Spectral Density (m?/Hz)

1072 b il vt i PSDs measured by the 1064 nm beam at different power
10" 10° 10" 10> 10° 10! settings of the same trap using one and the same bead. Slight
(@) Frequency (Hz) shifts in PSD curves are visible with curves corresponding to

lower power settings lying below the ones corresponding to
high powers, consistent with a slight nonlinearity effect in
detection. This is a worst-case scenario. The linear regime of
detection(it scales with bead size for large bea@sconsid-
erably higher for the larger pm beads we use in our fd
experiments. Furthermore, the fluctuations in the position of
: i : ‘ the larger beads will be lower in an elastic environment.
CE e Thus we conclude that the bead motion in our fd experiments
: ' ‘ 3 3 ] was well within the linear range of detection. The effect of
, ; 3 ‘ laser-induced heating, which would cause a qualitatively
B 3 dus s bt similar shift in the PSDs, was considered negligible for the
; : 3 | 3 E following reasons(i) As the power is increased, the solvent
temperature increas€s.7+1.2 K/W for watey [47], and its
P PR Rt viscosity is reduced, which leads to larger fluctuations in the
102 10" 10 10" 10* 10 bead position and thus larger PSD val{#8. This tempera-
(b) Frequency (Hz) ture effect on the PSD in water solutions has been measured
by Peterman, Gittes, and Schm[d{7] and was found to be
FIG. 6. () PSD for a bead in buffefgrey solid ling and a bead 504 for a power range of 0—120 mW using a 1064 nm
in 2 mg/ml fd solution(black solid ling at a fixed power(b) G'(f) wavelength lasefii) Figure 7c) shows the PSD of a 0.5m
before trap correctiomcircl_es), G’ after trap correct_ior(square;. bead in buffer as measured by the wide 830 nm beam for
and G' of the trap (flat line). The data are obtained from the o rent power settings of the narrow beam. No significant
2 mg/ml fd PSD curve ofa). shift in the PSDs is measured, indicating that neither a tem-

perature nor a nonlinear effect is detectable by the wide trap.
For higher fd concentrations, between 5 and 14 mg/ml,

the fd modulus dominates at all frequencies. We therefore
use aye of Eq. (8), with « derived from fitting Lorentzians F. Controls for aggregation of fd around the probe bead

to the PSDs of buffer data at the same laser powers t0 obtain There are three possible effects that could cause the local

the corrected modulu, for these concentrations. Bead ¢oncentration of fd in the vicinity of the probe bead to be
polydispersity causes only a small error in these cases SinGffrerent from the bulk fd concentratiorii) There might be
the correction itself is relatively small to begin with. direct attractive or repulsive interactions between the bead
surface and the virus particlg@.) There will in any case be
an entropic steric interaction, causing a depletion zone in the
absence of attractive interactiongi) There might be a dy-
namic pileup of virus due to the interaction with the laser
The interferometric displacement detection method is aptrap. We controlled for direct attractive interactions of virus
proximately linear for displacements up to about 200(fon  particles with silica beads by fluorescence microscopy and
0.5 um beads from the center of the trapd5]. If the bead by atomic force microscopyAFM). We fluorescently la-
thermally moves to larger distances, the displacements ailgeled virus particles with rhodamine and tracked the motion
underreported. This would be expected to increasingly occuof single virus particles around trapped silica beads. In no
with decreasing laser power and with more compliantcases did we see virus particles stuck to the beads. We then
samples. In order to test if nonlinearity in the detectionput a mixture of virus particles and beads on a glass slide and
caused relevant errors in our experiments, we performed made AFM dry scans. We also did not observe any detectable
measurement with a 0,am diameter silica bead trapped in increase in fd density around the beads in this test. We then
two superimposed laser foci of different colors— a 1064 nmcontrolled for a laser-induced dynamic pileup of the virus

E. Nonlinearity of the displacement detection
and temperature effect
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FIG. 7. (a) A sketch of the double laser trap setup used to test for the pileup of fd virus aroundquan@B&meter bead. The wide and
narrow focused laser traps have wavelengths of 830 nm and 1064 nm, respegiivesD for a bead in buffer measured with the narrow
1064 nm wavelength laser trap for different power settings of the samélifiapl 40 mW. Inset: PSD times the square of frequency for a
portion of the high-frequency datéc) PSD for a bead in buffer measured with the wide 830 nm wavelength laser trap for different power
settings of the narrow tra@d4—140 mW. Inset: PSD times the square of frequency for a portion of the high-frequencydie®SD for the
same sized bead in a concentrated 13.5 mg/ml fd solution measured with the wide trap for different power settings of the narrow trap
(14-190 mW. Darker curves correspond to higher power settings of the narrow trap. Inset: PSD times the 1.8th power of frequency for a
portion of the high-frequency data.

particles. We used the two colored beams sketched in Figncreasing trap strength. The high-frequency tails of the PSD
7(a) with beads in concentrated fd solution of 13.5 mg/ml.are curved slightly upward due to shot noise, since we used
The wide 830 nm focus was of low powéx5 mW) and  rather low power in the wide detection beam.

was used for displacement detection. The tight 1064 nm fo- The depletion zone around a bead of radilis expected
cus with variable laser power was used for trapping and wato be of a thickness interpolating between bead radius and
expected to pile up increasing amounts of fd around the beafilament length or persistence length, as long as the latter two
with increasing trapping power. An increasing local fd con-are larger than bead radius. If the bead is larger, then the
centration around the probe bead with increasing trappinghorter one of the two characteristic filament lengths will
power would shift the power spectra down at high frequen-determine the depletion-layer thicknegl]. Filament and
cies due to increased viscosity, which lowers the positiorpersistence length are aboujin. Therefore, we used beads
fluctuations of the bead. Figuré¢dj shows the PSD curves of 5 um diameter to reduce depletion effects. This works
measured from one and the same trapped bead with the widecause even if the bead displacements are only nm, the
830 nm beam for increasing power applied to the narrowStokes flow field around the bead extends to a distance of
beam. In the high-frequency part of the spectriffiy. 7(d)  abouta around the bead and samples mostly undisturbed
insef we see no systematic shift in the PSD curves withbulk medium in the case of am beads. The effects mea-
power, excluding the possibility of any measurable buildupsured with smaller beads and a comparison of single-particle
of virus particles around the bead. The low-frequency part ofo dual-particle microrheology will be published elsewhere
the spectra is different for different powers, reflecting the[48].
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moduli after averaging over several beads and the two per-
pendicular spatial directions recorded for each power. Before
averaging it was checked that X and Y fluctuations from each
individual recording gave identical spectra within experi-
. mental noise. The elastic and loss moduli derived from the
107 NN PSD data for the lowest, intermediate, and highest concen-
2 trations 0.2, 2, and 14 mg/ml are shown in Fig&)99(b),
and 9c), respectively.G” here includes both solvent and
polymer contributions. At the concentration of 0.2 mg/ml
[Fig. 9@)], which is barely above the overlap concentration
¢'(0.04 mg/m), the sample is predominantly viscous over
05 the whole frequency range measured, wWaHf) scaling as
102 L e o P R S| f1 as expected for &lose t9 Newtonian fluid. It should be
107 10° 10" 10® 10® 10* noted that the elastic modul@ (f) has a very low absolute
Frequency (Hz) magnitude(<1072 Pg, which is very difficult to measure
with macroscopic rheometers, but still reasonably well re-
solved in microrheology. With increasing fd concentration
[Figs. 9b) and 9c)], both moduli increase and, relatively,
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FIG. 8. PSD for beads in fd solutions of different concentration.
Higher concentrations have lower PSD values. With this in mind,

the curves for each fd concentration can be identified as follows : . .
Buffer, 0.8, 11 mg/ml(dotted line$; 0.2, 2, and 14 mg/m{solid the ela.StIC SharaCter of the solution !ncrgases, V@thap-
o . | proachingG”. Even at 14 mg/ml, which is just below the
lines); 0.4 and 5 mg/midashed lines Inset: A segment of the X isotropic-nematic phase transition, the elastic modulus is
position data for a bead in buffer, which corresponds to the buffer ' . . .
PSD curve. only on the order of 10 Pa, and the sample is still mainly
viscous, i.e., it remains rather weakly entangled. This is due
to the short contour length of the particles and to the charged
surface of the fd virus, which prevents sticking between the
A micrometer-sized bead optically trapped in a viscoelasparticles. The increase 8’ causes a shape change in Gie
tic solution undergoes confined Brownian motion. For acurve and a decrease (log-log) slope below 1 in the center
purely viscous fluid the variance of the position fluctuationspart of the curves, in agreement with the Kramers-Kronig
x(t) is simply related via the equipartition theorem to the trapintegral relationship betweed’ andG” [Egs.(3)~(5)]. In the
stiffness by[41] (x(1)2=k,T/«. The displacement variance terminal relaxation regime, which is best visible at the inter-
is equal to the integral over the PSD. A change in viscositynediate concentratiorG’(f) has a slope of 2, whil&”(f)
alone will not change the variance and therefore the integrdlas a slope of 1, as expected for rigid rods in flgsee
of the PSD, but will change its shape. It will still be a Lorent- below). For the high-concentration sample the terminal re-
zian, but with a different corner frequency. A segment of thelaxation regime moves to frequencies below the lower fre-
thermal fluctuations in the position of a bead trapped induency limit of the instrument. At the high-frequency end of
buffer is shown in the inset of Fig. 8. The PSD curve corre-the curvesG’(f) increases with approximate power-law be-
sponding to these fluctuations is the top dotted curve in Fighavior, the slope of which approaches 3/4 at high concentra-
8. Adding a viscoelastic polymer to the solution will have tions as predicted for semiflexible polymefsee below
two effects. The complex shear modulG$ will generally ~ G'(f) is even for the highest concentration measured still in
increase and the PSDs will decrease in amplitude. Adding transition regime between a plateaulike regime and the ex-
both a frequency-dependent loss and elastic modulus wilected high-frequency scaling regime. In a true power-law
also change the functional form of the PSDs, and they willlegimeG’ andG” must be parallel.
no longer be Lorentzians. Figure 8 illustrates how the PSDs Figure 10 presents the full-concentration dependence of
gradually change with increasing virus concentration. As exelastic and viscous moduli, respectively. The concentration
pected PSD amplitudes decrease with increasing concentrédependence oG’(f) is presented in Fig. 18). Virus con-
tion. The slope of the curves at high frequencies deviatesentrations ranged from 0.2 to 14 mg/ml, spanning the dilute
slightly from -2, below about 100 Hz this deviation is stron- to entangled regimesG’(f) shows a strong, more than
ger, tending toward a slope of about —1.5 at the highest viru4000-fold increase in magnitude that reflects the increased
concentration. The corner frequency first moves to lower fredegree of entanglement. The terminal relaxation regime is
guencies and then disappears entirely as the curves changecordingly shifted to lower frequencies with increasing con-
shape. centration, below the lower frequency limit of the experi-
In the following we will discuss the complex shear modu- ment for the highest concentrations. A further indication of
lus of solutions of varying virus concentrations, derived fromentanglement comes from a test of the scaling of the curves
thermal fluctuation-time series data as described in Eqswith concentration. In the dilute limit the elastic modulus has
(3)«(5). Curves will only be presented after correction for theto scale linearly with concentration. In entangled solutions,
trap effects as described in Materials and Methods. Datat least at frequencies reflecting collective dynamic modes of
were taken at several low powers at a sampling rate othe network,c-dependence will be stronger than linear. At
20 kHz and several high powers at a sampling rate ohigh frequencies, when short-scale single-filament relax-
195 kHz. Data are presented for both the elastic and losations are dominating the response, both moduli will scale

IV. RESULTS AND DISCUSSION
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FIG. 9. (a) G'(f) andG"(f) for a 0.2 mg/ml fd solution. Low and high sampling rate data are distinguished by grey and black curves,
respectively, for each modulu&) Similar data are presented for fd samples of concentration 2 mg/mcaad mg/ml. Error bars indicate
the standard deviation of the mean of the averaged data.

for all concentrations linearly wittc again. Figure 1() about a decade down from the cutoff—a part of the curves
shows G'(f) divided by the respective fd concentrations. that is not plotted11]. At frequencies above about 10 kHz,
Curves for concentrations between 0.2 and 2 mg/ml overlaghe low-concentration curvgsee Fig. 1(r)], including the
reasonably well within experimental error. This demonstrate®ne in pure buffer, curve up, above the straight line corre-
that entanglement becomes relevant only at concentratiorfonding to the loss modulus derived from water viscosity.
beyond 2 mg/ml, i.e.c>50c". This result is consistent The reason for that is the inertia of the solvgsee Sec.
with other experiments on orientational dynamics of rod solll C]. The concentration dependence of the loss moduli can
lutions, showing that the naive estimatecof 1/L3 seriously ~ also be visualized by plotting the viscosiffig. 10d)],
overestimates the dynamic consequences of steric rod-rodhich is defined asy( f)=G"(f)/2wf. The buffer and poly-
interactions[36,37. The concentration dependence of themer contributions to the stress tensor of the solution, and
loss moduli for all concentrations is presented in Figicl0 hence, the viscous modulus are addit[ag]. The quantity
Circled points are buffer data and the straight line correthat is measured experimentally is the total viscous modulus
sponds to the constant viscosity of wa@f=2mf. The loss  of both the buffer and polymer. In order to test the concen-
modulus[Fig. 10c)] changes with concentration also in a tration scaling of the polyme&”, the solvent contribution
manner that demonstrates increasing entanglement, with th@s to be subtracted first. In Fig. (&) we plot (G"(f)
terminal relaxation regime moving to lower frequencies and-Gy ) divided by concentration. This plot demonstrates
with an intermediate plateaulike regime developing. The facthat all curves approximate a universal line curve at high
that G” appears to extend beyond the collective-m@de frequencies, but deviate from this line at low frequencies in a
plateaulik¢ regime and approach the single-filamentconcentration-dependent manner.

asymptotic slope of 3/4, where& ends in the transition Figure 11 provides a comparison of our experimental re-
regime is mostly due to the fact that the finite high-frequencysults with published models. The lowest concentration
cutoff of the Kramers-Kronig integral strongly distor@ sample for which we could reliably measure a storage modu-

021503-9



ADDAS, SCHMIDT, AND TANG PHYSICAL REVIEW E70, 021503(2004

107 [reemr—r—rrrrm s 10" . . , . :
= 10' ol i
a 10
=~ ()]
ED —
10" g
S S0t -
k=] 1 2
g 10 g
) T ;a2
= o 10° b
3 102 2 £
i 8 L’
g . SR S & -
& 10 o 0.2-2 mg/ml
104 PETTIT BRI RTITT! B [T IR TTTT SRR AT | 104 Linul 1 sl 4 ---ml1 PETIRTTTT B .......l3
107 10 10’ 102 10° 10 10° 10 102 10
(a) Frequency (Hz) (b) Frequency (Hz)
10° 10° s rmr T rr—rmr e
vl O
= 10
e
= L 1
o 10 F _ 10
[22] w
_g 14 mg/ml g
B 100 >
= ‘B 2 14 mg/ml
% y L. il 8 10° | 2mg/_rrll_." ‘ L > .
3 10 S ""."" g 0.8 mg/mi '~..‘\3 " “=-.. 11 mg/ml
a . s 4 5 mg/ml
%10.2 i
5 0.8
10-3 PETTTIT l ATTITY EEIERTTTY EEPTTITT EEETTTTT I ETTTT BRI FERTTT EEEERTTTY EEPETETTTT MR RTTTT EAE T 3- Liuy 4- Ly
102 10" 10° 10' 10> 10° 10* 10° 107 10" 10° 10" 10® 10® 10 10°
(c) Frequency (Hz) (d) Frequency (Hz)
103 LELRALLL BN AL ELLLL BERELELLL BERBLALLLL BELELRLLLL BELELELLLL BELELRLLL
2 L P 4
— 10 slope 0.75 /
o ot / : "
- 10
o
§ 10°f -
IS
% 10-1 L 4
[&]
5 ,n2
o 10 0.2-2 mg/ml
o 409 1 |
5
10»4 PETITT B TTTT T ETIT BRI IR BT MR T
102 10" 10° 10" 10 10° 10* 10°
(e) Frequency (Hz)

FIG. 10.(a) G’ (f) for beads in fd solutions of different concentrati@ndicated by numbers in mg/mlLow and high sampling rate data
are distinguished by grey and black colors respectively for each concentration. Pairs of curves for each concentration are plotted alternately
in solid and dashed linegh) G'(f) divided by concentratior(c) G”(f) with buffer data(circles, and the theoretical loss modulus of buffer

U

solution(solid black straight ling (d) The viscosityz(f)=G"(f)/2=f and(e) (G"(f) -Gy ¢, divided by concentration.

lus was the 0.2 mg/ml solution. At this concentration, rathemy its reduced form of Eq.10) as long as the concentration
close toc'(0.04 mg/myJ, we expect to see mainly the moduli is not too high above”. At low frequencies where internal
caused by the free rotation of unentangled rods. The modutiynamic modes play no role, this behavior should be that of
are expected to remain well described by the dilute theoryigid rods, described by well-known mod€g38] [Eq. (11)].
predictions with the rotational diffusion coefficient replaced At higher frequencies internal dynamic modes of the semi-
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FIG. 11.(a) G'(f) data for a 0.2 mg/ml fd solution taken at low and high sampling r@pgsn circles and squares, respectiyeind for
a 14 mg/ml fd solution taken at low and high sampling rai@gsen diamonds and triangles, respectiyelyheory curves are shown for
0.2 mg/ml dilute(grey dashed ling tightly entangledblack dashed ling and for 14 mg/ml dilut€grey solid ling, tightly entangledblack
solid line). The same labeling scheme is usedi to plot G”(f) using filled symbols for data points. Error bars indicate the standard
deviation of the mean of the averaged data.

flexible rods will become apparent. A model that describes 0.6kgTv wZ) (11)

the dynamics of dilute solutions of semiflexible polymers is G'(w)= (m
that of Shankar, Pasquali, and Motger], which is strictly '
valid in the limit of long filamentgL > L, see Appendix A, wherew=27f. To obtain a more quantitative comparison, we
Sec. 3. Entanglements at higher concentrations will influ-fit this expression to the 0.2 mg/r@’ data(Fig. 12 result-
ence only the collective dynamics visible at the low-ing in a rotational diffusion coefficient of 11.5% in good
frequency end of the spectrum. We use the entangled theoggreement with the birefringence results. In Fig. 12 we plot
of Morse[14,15 to compare to our high-concentration data. the 0.2 mg/ml low sampling rate elastic modulus data with
This theory is also strictly valid for long filaments > L,). the dilute rigid-rod theory expression of E(L1) and the
The storage modulugFig. 11(a)] measured for the dilute dilute semiflexible theory curve using the fitting parameter of
sample follows relatively closely the dilute rod limit. The 11.5 st for the rotational diffusion coefficient for both
slight shift of the data from the prediction of the dilute theory theory curves. The arrow in Fig. 12 indicates the frequency
likely indicates that polymer hindrance is beginning to takel/(2#7 ;) =11 Hz, below which the modulus is expected to
place. The onset of the plateau occurs gt~ 16 Hz, corre-  relax by rotational diffusion(see Appendix, Sec.)2Al-
sponding to a rotational relaxation timg,, of about 10 ms.
The dependence of the rotational diffusion coefficient on
concentration at high ionic strength for fd virus has been
studied using dielectric birefringence by Kraneral. [37].
They reported a diffusion coefficient d@,,=21.7+0.5 st
belowc". Up to a concentration of arouna'§0.32 mg/m),
they have shown that the measured rotational diffusion val-
ues follow the relationship by Teraoka and Hayakgw8)

and Teraoka, Ookubo, and Hayakaj8]

10! vy vy —rrrr
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Shear Elastic Modulus G' (Pa)

10°
D UL3 -2
—L = <1 + le) , (10)
ro B 10-4
h B Fi al § dis th 10° 10' 102 10°
where8=1.35%X 10° is a numerical factor and is the num- Frequency (Hz)

ber of polymers per unit volume. Using E@LO), the rota-
tional diffusion coefficient for the 0.2 mg/ml solution is pre-  FiG. 12. G/(f) of the 0.2 mg/ml low sampling rate data. The
dicted to be 17¥. This corresponds to a rotational error bars indicate the standard deviation of the mean of the aver-
relaxation timer,,;=1/6D, of 9.8 ms or a characteristic fre- aged data. The solid line is the dilute rigid rod theGcurve. The
quency off,=1/(277,)=16.2 Hz. The expression for the dashed line is the dilute semiflexible thed®/ curve. The arrow
dilute rigid-rod elastic modulug38] is indicates the frequency @m7y).
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though the concentration is about five times higher tban rectly infer high-frequency dynamics from intermediate-
the results are clearly not well described by the entangleftequency data by making two simple assumptigisthere
model plotted in Fig. 1(a) (see Appendix, Sec.)4Figure s a (single-filament scaling behavior at high frequencies
11(a) also compare&s’ for the most concentrated solution where moduli scale linearly with concentration, independent
(14 mg/mb with the two models. This concentration is far in of entang|ement, an(ji) there is a p|ateau regime where the
the entangled regime and, consistent with that, the dilutelastic modulus scales with a power larger than 1 with con-
model does not fit the data. _ centration due to entanglement. At high frequencies, the

In the tightly entangled limitsee Appendix, Sec.)athe-  complex shear modulus of semiflexible polymer solutions is
oretical modeling is usually based on the concept of a tube iBredicted to scale @4 and be dominated by single-filament
which each polymer exisg1] formed by intersecting fila- tension dynamic§14-16. The modulus will, therefore, be
ments. It is often pgrm|35|ble to .neglect the dynamlcs_, O.f thEfinear in concentration for such high frequencies. T&é
tube and only consider the motion of the polymer within a.urves of Fig. 108) can be seen to approach this limit.

fixed tube because the relaxation of the tube is coupled to ", , .
slow collective dynamics, whereas the motion of the en- With the above assumptions the shear modulus can be

trapped chain is much faster single-chain dynamics. The eﬁ/y”tten as[53]
tanglement length., is roughly the contour length between G(f) = goc® + g,cfP, (12
successive collisions of the polymer with the tube wall, de- )

pending on concentration and persistence lefigth (A2)].  Wherego andg, are constants. In Fig. 18 we plotG’ and
The viscoelastic properties of the solution in the low fre-G"~Giysrer for all concentrations. We  therarbitrarily)
quency regime strongly depend on this length. For the tub€hoose one reference curve and find for each concentration
model to be valid and particularly for the above-mentioned@ factorh(c) to multiply the modulus axis and a factic) to
separation of time scales to apply,must be much larger multiply the frequency axis, such that both the loss modulus
than L, (this is a definition of the tightly entangled limit ~at high frequencies and the elastic modulus in the plateau
There are two ways to obtain an estimate for the entanglg€gime superimposgrig. 13b)]. With these factors we can
ment length. One method suggested by Mds®52 is to  rewrite Eq. (12) to describe the universal curve, which
use F-actin data reported in the literature for the plateaghould be, by construction, concentration independent:
modulusG’ (see Appendix, Sec.)4The other way is to use i JE— Li(e)18

a different treatment of Morsgb1] to calculate the tube di- h(ECLF-1(0)]=6oc™h(O) + grelf - (O Fh(c).  (13)
ameter for tightly entangled semiflexible solutions and ex-For the right-hand side to be concentration independent,
tract the entanglement length from the tube diamesee c®h(c) andc-j?(c)-h(c) have to be constants, i.e.,

Appendix, Sec. ¥ The two methods lead to entanglement

lengths that differ at most by 30% for concentrations higher logih(c)] = const -« log(c), (14
than 5 mg/ml. Inspecting the ratlq./L shows that the 5, 8, and
11, and 14 mg/ml fd solutions used in the experiments lie in log[c - h(c)] = const -3 log[j (c)]. (15)

the entangled regime, although the level of entanglement is
weak, as the ratio remains on the order of unity. For the most Equations(14) and (15) are plotted in Figs. 18) and
concentrated solution of 14 mg/ml, the entangled modell3(d), respectively. From these curves we read off the pla-
captures well the magnitude of the measured mod[figz ~ teau modulus concentration dependencexefl.36 (Pear-
11(a)]. The curve shape, however, is not well fitted. The lim-son’sr=0.99 and the high-frequency power-law exponent
ited applicability of the tube concept to our system and thedependence oB=0.63 (Pearson’s =0.98. The power 1.36
difficulty in finding an exact method of obtaining the en- is consistent with the predicted exponent of 7(Norse
tanglement length makes the low-frequency, high-from the tube model. Thus even though the data show no
concentration theory prediction even less quantitatively reliwell-developed plateau due to the short length of the fila-
able than the theory curves suggest in the figures. ments, the arguments leading to the scaling prediction in this

The same comparison with theory is shown in Figth}l collective dynamics regime appears to be valid. The high-
for the loss moduluss” including the solvent contribution. frequency scaling is expected to be 3/4. This is only margin-
Again for the low concentration of 0.2 mg/ml, the dilute rod ally consistent with our results. One reason for discrepancy
limit is a reasonable fit, while at the highest concentration themight be that the transition between plateau and asymptotic
magnitude of the modulus is well explained, the curve shappower law may show additional structure. Morse predicts an
is again different. The crossover from low-frequency collec-intermediate regime caused by axial relaxation of tension
tive dynamics to high-frequency single-filament dynamics isthrough the free end of the filamenf$5,17. This is ex-
expected to occur at a frequency larger than2%f,) pected to change the power slopedifto closer to 1, steeper
=400 Hz(see Appendix, Sec.)4The loss modulus is seen to than we concluded from the scaling analysis. On the other
approach the predicted theory curve in Fig(d)lat frequen- hand, the broad transition from the collectiyglateaulike
cies above about 1 kHz, after strongly deviating in shape inegime might have biased the result toward a smaller than
the intermediate frequency range. the true power-law exponent.

While G” thus appears to approach a high-frequency
power-law regime,G’ clearly does not, and therefore the V. CONCLUSIONS
exact form of that power law cannot directly be read off the We have applied a passive microrheology technique to
data. There is, however, a convenient metlig8| to indi-  extract the elastic and viscous shear moduli of solutions of
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structurally well-characterized monodisperse semiflexible APPENDIX

filamentous bacteriophage, covering more than six decades . . .
between 102 and 100 kHz. The concentrations of the solu- The appendix contains a sketch of the relevant theoretical

tions spanned the dilute, semidilute, and entangled regimeg'eatments of semifiexible polymer systems in the dilute, se-

Shear moduli were measured covering again about six démdllute, and tightly entangled limits and a discussion of the

cades in magnitude, from 1®to 1000 Pa. This demonstrates Engrli%iltigqr?scrt]gr:&msshsgrdrrt1|(r)ndiIsgpoinsduecnhci 2{;2]2 different
the unique capabilities of microrheology compared to con- y '

ventional macroscopic methods. Where there are theoretical
models, we found reasonable agreement, but there is pres- 1. Modulus

ently no applicable model describing the collective entangled The theoretical approach of Morsgl4,15 uses the
dynamics of short semifiexible polymers, leaving a ChalIeng‘?‘(ramers-Kirkwood theory of viscoelasticity,, which models a

to the community. polymer as a primitive chain consisting of beads, which are
point centers of hydrodynamic resistance in a solvent of vis-
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moduli, respectively. The expression for the shear modulusion in the rotational diffusion coefficient, but fluctuations in
of a solution of semiflexible polymers has the general formthe bending modes of the polymers are unaffected. As the
concentration approaches the tightly entangled limit, both the

G = Gsowent™ Geurve * Corient + Grens (A1) orientation and shape of polymers are affected by the pres-

where the curvature term arises from both bending force§nce of other polymers. A tube picture for the polymers starts

and the orientational entropy of the links. The orientationalto develop. However, the form of the moduli in this regime

term is a residual contribution of the orientational entropyhas not been worked out analytically.

arising from the two end links of the primitive chain. The

tension term arises from the constraint forces that resist ex- 4. Tightly entangled theory

tension of the links of the chain. An outline of the different . .
approaches of treating dilute, semidilute, and tightly en- Recent theoretical treatment by MorB4,19 describes

. ) ) . the viscoelastic behavior of tightly entangled solutions of
tangled solutions is presented below along with the time de- ~ ..~ " . . . .
semiflexible polymers. This concentration regime is charac-

pendence and the physical origin of the relevant time scales_. o . .
) . ) erized by the following:(i) polymers exist on short time
of the dynamic modulus for each concentration regime. b . . .
scales within a tube of diamet&,<L,, (ii) motions along

the tube contour are resisted by the viscous drag due to the
solvent, (i) the shape of the tube deforms affinely in re-
The approach outlined below for the dilute theory of sponse to macroscopic deformation of the solution, @wnd
semiflexible polymers is that of Shankar, Pasquali, andxcluded-volume interactions between polymers are ne-
Morse [17]. The approach is based on solving a Langevinglected except for keeping the polymer in its tube.
equation, which describes the Brownian motion of a single The entanglement length, is a phenomenological pa-
free-draining wormlike chain in an imposed mean flow. Therameter in the order of the contour length between points on
equation relates the hydrodynamic frictional forces acting orthe filament where collisions with the walls of the tube occur.
the chain with the bending energy force and the constrainThe onset of the tightly entangled regime is roughly esti-
(tension) force that enforces inextensibility of the chain. The- mated to occur when the contour length equals the entangle-
oretical curves presented in our paper correspond to an aneent length.
lytical approximation of the full theory.

2. Dilute theory

Time scales
Time scales . . . . .
(i) The time scaler required for tension to diffuse the

(i) The shortest time scale is that required for strain andength of the chain has the same form as the dilute gége.
tension to diffuse the entire length of the chain-L%/L).  The relaxation timer,, of a bending mode of wavelength
The modulus for times much shorter thanis expected to  equal to the entanglement lendthof the polymer in its tube
decay agt™" (ii) The next relaxation time corresponds to js the relevant time scale that corresponds tdn the dilute
the longest wavelength bending mode of a semiflexible rogase. It has the same form as with the contour length
of lengthL, 7, ~L*/L,. For times7y<t<r, the modulus is  replaced by the entanglement length. The modulus at time
expected to decay as®“. (iii) The longest relaxation time gscales below-, has at-3/* dependence. This modulus is from
is due to the rotational diffusion of the rods in the Solutionthe Sing'e_f"ament dynamics Contribution, i_e_, it is propor-
Tioa~ L>. This relaxation time is the terminal relaxation time tional to concentration. It does not depend on the degree of
of flow-induced anisotropies in the distribution of rod orien- gntanglement of the polymer in the network, and it has the
tations. The modulus for times much longer thagq is  same form in dilute and entangled solutionii) For the
expected to decay &', as for rigid rods. entangled case, a polymer exists in a tube and diffuses along

The time scales form a hierarchy, <7, <7,4 and jts contour length, a process that is called reptation. The re-
become more separated as the semiflexible rods approach th&ation time associated with this diffusion is of the order of
rigid-rod limit, i.e., asL/L, decreases. For the fd system time needed for the polymer to diffuse its own contour length
Where L/L,=1/2 the intermediate time reg|[r;/?1 will shrink Trep~|—3- (iv) The longest time scale, which corresponds to
leading to a featureless crossover from”" to ex- jts dilute counterpartr,y has the length dependeneg
ponential rod diffusion decay. ~L2L,, but it is much larger than the dilute case since in a

The curves for the dilute semiflexible theory of Figs. concentrated solution, the polymer is much more constrained
11(a), 11(b), and 12 are obtained from the analytical approxi-and must diffuse many times its own length before its orien-
mation(Egs. 141 of Ref[17]) of the full theory(Eqgs. 124 of  tation changes.

Ref. [17])._The input parameters to the model for fd solutions  Eqr f<(2mr)7L, the decay of stress is seen to be mainly
are the diameter of the filamedt7 nm, contour length.  {he result of diffusion due to reptation for curvature and ori-
=0.9 um, persistence length,=2.2 um, concentration of  entation stress terms, whereas for (277,) "%, the modulus
the solutionc, solution tempgratureT:21.4°C, and the s expected to be dominated by the tension component.
solvent viscosity;=0.969x 10" N-s/nf. The curves for the entangled semiflexible theory plotted
in Figs. 11a) and 11b) are obtained from a numerical evalu-
ation of Egs. 124 of Ref[15]. The input parameters to the

As the solution concentration is increased above the dilutenodel for fd solutions are the diameter of the filameint
limit, polymers start to hinder each other leading to a reduc=7 nm, contour lengthL=0.9 um, persistence lengtih,

3. Semidilute theory
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=2.2 um, concentration of the solutiory solution tempera- tanglement length of actin solution is found to leg

ture T=21.4°C, solvent viscosityy=0.969x 1073 N-s/n?, =2.2um, and so the prefactop is estimated to be 5.4.

and the entanglement length. Equation(A2) is then applied to fd, with a persistence length
One method to obtain the entanglement length suggestdd,=2.2um and the contour length densityp

by Morse[52] is to use known data of F-actin solutions to ={[fd](mg/ml)L(cm)}/m,(mg), where m, is the polymer

estimate this parameter. There is an undetermined prefactanass of fd, to obtain the concentration dependence of the

in the equation relating the entanglement length to the perentanglement length.

sistence length and contour length denity] The relation between the entanglement length and tube
s 105 diameter was derived by Odij{54] L,~D2*L}3 The
Le=bp L™ (A2) other way to determine the entanglement Iengtﬁl is to use a

The prefactorb is assumed to be a universal parametetmOdel’ for estimating the tube diameter, and relate it to the
entanglement length. Such a model has been proposed for

independent of the kind of polymer system under study.; o . .
Sackmann and coworkers reported values for the storage plft;{ghtly entangled semiflexible solutiorjs1]. Two different

teau mOdumSG;,)IateauN 1-2 dyne/cr? for F-actin solutions mechanisms are prowdt_ad that give Q|ﬁerent power-law dg-
at a concentration of 1 mg/ml. The Morse thegh§] gives pendence on concentration and persistence length. One gives

the following expression for the plateau modulus assuming it deltalled %escmlatlon of t)het mte:ac;uor:hof a I|Iool¥_mer ;N't?_
is dominated by a curvature stress contribution Single nearby polymers, but neégiects the collecuve elastic

relaxation of the network. This approach yield€“*

, 7pT =3.45 2P (Eq. 47 in Ref.[51]). The other approach

curve = 5L (A3) treats the surrounding network around a polymer as an elas-
€ tic continuum with shear modulus equal to the self-

In order to obtain a plateau modulus of 1 dynefcwhichis  consistently determined plateau modulus of the solution and

comparable to the experimental result, and using values fogives LE"=1.7¢p"*3L"® (Egs. 9 and 65 in Ref[51]).

the persistence length,=17 um, contour length density ~ We use a combination of both approaches that was suggested

=39 um2, and temperatur@=295 K, the value for the en- by Morse[52] L=((LECA)*+(LEMA4)V4,
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